75 resultados para kernel estimator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction : The pathological processes caused by Alzheimer's disease (AD) supposedly disrupt communication between and within the distributed cortical networks due to the dysfunction/loss of synapses and myelination breakdown. Indeed, recently (Knyazeva et al. 2008), we have revealed the whole-head topography of EEG synchronization specific to AD. Here we analyze whether and how these abnormalities of synchronization are related to the demyelination of cortico-cortical fibers. Methods : Fifteen newly diagnosed AD patients (CDR 0.5-1) and 15 controls matched for age, participated in the study. Their multichannel (128) EEGs were recorded during 3-5 min at rest. They were submitted to the multivariate phase synchronization (MPS) analysis for mapping regional synchronization. To obtain individual whole-head maps, the MPS was computed for each sensor considering its 2nd nearest topographical neighbors. Separate calculations were performed for the delta, theta, alpha-1/−2, and beta-1/−2 EEG bands. The same subjects were scanned on a 3 Tesla Philips scanner. The protocol included a high-resolution T1-weighted sequence and a Magnetization Transfer Imaging (MTI) acquisition. For each subject, we defined a 3mm thick layer of white matter exactly below the cortical gray matter. The magnetization transfer ratio (MTR) - an estimator of myelination - was calculated for this layer in 39 Brodmann-defined ROIs per hemisphere. To assess the between-group differences, we used a permutation version of Hotelling's T2 test or two-sample T-test (Pcorrected <0.05). For correlation analysis, Spearman Rank Correlation was calculated. Results : In AD patients, we have found an abnormal landscape of synchronization characterized by a decrease in MPS over the fronto-temporal region of the left hemisphere and an increase over the temporo-parieto-occipital regions bilaterally. Also, we have shown a widespread decrease in regional MTR in the AD patients for all the areas excluding motor, premotor, and primary sensory ones. Assuming that AD-related changes in synchronization are associated with demyelination, we hypothesized a correlation between the regional MTR values and MPS values in the hypo- and hyper-synchronized clusters. We found that MPS in the left fronto-temporal hypo-synchronized cluster directly correlates with myelination in BA42-46 of the left hemisphere: the lower the myelination in individual patients, the lower the EEG synchronization. By contrast, in the posterior hyper-synchronized cluster, MPS inversely correlated with myelination, i.e., the lower the myelination, the higher the synchronization. This posterior hyper-synchronization, more characteristic for early-onset AD, probably, results from the initial effect of the disease on cortical inhibition, reducing cortical capacity for decoupling irrelevant connections. Remarkably, it showed different topography of correlations in early- vs. late-onset patients. In the early-onset patients, hyper-synchronization was mainly related to demyelination in posterior BAs, the effect being significant in all the EEG frequency bands. In the late-onset patients, widely distributed correlations were significant for the EEG delta band, suggesting an interaction between the cerebral manifestations of AD and the age of its onset, i.e., topographically selective impairment of cortical inhibition in early-onset AD vs. its wide-spread weakening in old age. Conclusions : Overall, our results document that the degradation of white matter is a significant factor of AD pathogenesis leading to functional dysconnection, the latter being reflected in EEG synchronization abnormalities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present and apply a semisupervised support vector machine based on cluster kernels for the problem of very high resolution image classification. In the proposed setting, a base kernel working with labeled samples only is deformed by a likelihood kernel encoding similarities between unlabeled examples. The resulting kernel is used to train a standard support vector machine (SVM) classifier. Experiments carried out on very high resolution (VHR) multispectral and hyperspectral images using very few labeled examples show the relevancy of the method in the context of urban image classification. Its simplicity and the small number of parameters involved make it versatile and workable by unexperimented users.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most people hold beliefs about personality characteristics typical members of their own and others' cultures. These perceptions of national character may be generalizations from personal experience, stereotypes with a "kernel of truth", or inaccurate stereotypes. We obtained national character ratings of 3989 people from 49 cultures and compared them with the average personality scores of culture members assessed by observer ratings and self-reports. National character ratings were reliable but did not converge with assessed traits. Perceptions of national character thus appear to be unfounded stereotypes that may serve the function of maintaining a national identity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Glutathione (GSH) dysregulation at the gene, protein and functional levels observed in schizophrenia patients, and schizophrenia-like anomalies in GSH deficit experimental models, suggest that genetic glutathione synthesis impairments represent one major risk factor for the disease (Do et al., 2009). In a randomized, double blind, placebo controlled, add-on clinical trial of 140 patients, the GSH precursor N-Acetyl-Cysteine (NAC, 2g/day, 6 months) significantly improved the negative symptoms and reduced sideeffects due to antipsychotics (Berk et al., 2008). In a subset of patients (n=7), NAC (2g/day, 2 months, cross-over design) also improved auditory evoked potentials, the NMDA-dependent mismatch negativity (Lavoie et al, 2008). Methods: To determine whether increased GSH levels would modulate the topography of functional brain connectivity, we applied a multivariate phase synchronization (MPS) estimator (Knyazeva et al, 2008) to dense-array EEGs recorded during rest with eyes closed at the protocol onset, the point of crossover, and at its end. Results: The whole-head imaging revealed a specific synchronization landscape in NAC compared to placebo condition. In particular, NAC increased MPS over frontal and left temporal regions in a frequency-specific manner. The topography and direction of MPS changes were similar and robust in all 7 patients. Moreover, these changes correlated with the changes in the Liddle's score of disorganization, thus linking EEG synchronization to the improvement of the clinical picture. Conclusions: The data suggest an important pathway towards new therapeutic strategies that target GSH dysregulation in schizophrenia. They also show the utility of MPS mapping as a marker of treatment efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of behavioural traits have substantial effects on the gene dynamics and genetic structure of local populations. The mating system is a plastic trait that varies with environmental conditions in the domestic cat (Felis catus) allowing an intraspecific comparison of the impact of this feature on genetic characteristics of the population. To assess the potential effect of the heterogenity of males' contribution to the next generation on variance effective size, we applied the ecological approach of Nunney & Elam (1994) based upon a demographic and behavioural study, and the genetic 'temporal methods' of Waples (1989) and Berthier et al. (2002) using microsatellite markers. The two cat populations studied were nearly closed, similar in size and survival parameters, but differed in their mating system. Immigration appeared extremely restricted in both cases due to environmental and social constraints. As expected, the ratio of effective size to census number (Ne/N) was higher in the promiscuous cat population (harmonic mean = 42%) than in the polygynous one (33%), when Ne was calculated from the ecological method. Only the genetic results based on Waples' estimator were consistent with the ecological results, but failed to evidence an effect of the mating system. Results based on the estimation of Berthier et al. (2002) were extremely variable, with Ne sometimes exceeding census size. Such low reliability in the genetic results should retain attention for conservation purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution tomographic imaging of the shallow subsurface is becoming increasingly important for a wide range of environmental, hydrological and engineering applications. Because of their superior resolution power, their sensitivity to pertinent petrophysical parameters, and their far reaching complementarities, both seismic and georadar crosshole imaging are of particular importance. To date, corresponding approaches have largely relied on asymptotic, ray-based approaches, which only account for a very small part of the observed wavefields, inherently suffer from a limited resolution, and in complex environments may prove to be inadequate. These problems can potentially be alleviated through waveform inversion. We have developed an acoustic waveform inversion approach for crosshole seismic data whose kernel is based on a finite-difference time-domain (FDTD) solution of the 2-D acoustic wave equations. This algorithm is tested on and applied to synthetic data from seismic velocity models of increasing complexity and realism and the results are compared to those obtained using state-of-the-art ray-based traveltime tomography. Regardless of the heterogeneity of the underlying models, the waveform inversion approach has the potential of reliably resolving both the geometry and the acoustic properties of features of the size of less than half a dominant wavelength. Our results do, however, also indicate that, within their inherent resolution limits, ray-based approaches provide an effective and efficient means to obtain satisfactory tomographic reconstructions of the seismic velocity structure in the presence of mild to moderate heterogeneity and in absence of strong scattering. Conversely, the excess effort of waveform inversion provides the greatest benefits for the most heterogeneous, and arguably most realistic, environments where multiple scattering effects tend to be prevalent and ray-based methods lose most of their effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SummaryDiscrete data arise in various research fields, typically when the observations are count data.I propose a robust and efficient parametric procedure for estimation of discrete distributions. The estimation is done in two phases. First, a very robust, but possibly inefficient, estimate of the model parameters is computed and used to indentify outliers. Then the outliers are either removed from the sample or given low weights, and a weighted maximum likelihood estimate (WML) is computed.The weights are determined via an adaptive process such that if the data follow the model, then asymptotically no observation is downweighted.I prove that the final estimator inherits the breakdown point of the initial one, and that its influence function at the model is the same as the influence function of the maximum likelihood estimator, which strongly suggests that it is asymptotically fully efficient.The initial estimator is a minimum disparity estimator (MDE). MDEs can be shown to have full asymptotic efficiency, and some MDEs have very high breakdown points and very low bias under contamination. Several initial estimators are considered, and the performances of the WMLs based on each of them are studied.It results that in a great variety of situations the WML substantially improves the initial estimator, both in terms of finite sample mean square error and in terms of bias under contamination. Besides, the performances of the WML are rather stable under a change of the MDE even if the MDEs have very different behaviors.Two examples of application of the WML to real data are considered. In both of them, the necessity for a robust estimator is clear: the maximum likelihood estimator is badly corrupted by the presence of a few outliers.This procedure is particularly natural in the discrete distribution setting, but could be extended to the continuous case, for which a possible procedure is sketched.RésuméLes données discrètes sont présentes dans différents domaines de recherche, en particulier lorsque les observations sont des comptages.Je propose une méthode paramétrique robuste et efficace pour l'estimation de distributions discrètes. L'estimation est faite en deux phases. Tout d'abord, un estimateur très robuste des paramètres du modèle est calculé, et utilisé pour la détection des données aberrantes (outliers). Cet estimateur n'est pas nécessairement efficace. Ensuite, soit les outliers sont retirés de l'échantillon, soit des faibles poids leur sont attribués, et un estimateur du maximum de vraisemblance pondéré (WML) est calculé.Les poids sont déterminés via un processus adaptif, tel qu'asymptotiquement, si les données suivent le modèle, aucune observation n'est dépondérée.Je prouve que le point de rupture de l'estimateur final est au moins aussi élevé que celui de l'estimateur initial, et que sa fonction d'influence au modèle est la même que celle du maximum de vraisemblance, ce qui suggère que cet estimateur est pleinement efficace asymptotiquement.L'estimateur initial est un estimateur de disparité minimale (MDE). Les MDE sont asymptotiquement pleinement efficaces, et certains d'entre eux ont un point de rupture très élevé et un très faible biais sous contamination. J'étudie les performances du WML basé sur différents MDEs.Le résultat est que dans une grande variété de situations le WML améliore largement les performances de l'estimateur initial, autant en terme du carré moyen de l'erreur que du biais sous contamination. De plus, les performances du WML restent assez stables lorsqu'on change l'estimateur initial, même si les différents MDEs ont des comportements très différents.Je considère deux exemples d'application du WML à des données réelles, où la nécessité d'un estimateur robuste est manifeste : l'estimateur du maximum de vraisemblance est fortement corrompu par la présence de quelques outliers.La méthode proposée est particulièrement naturelle dans le cadre des distributions discrètes, mais pourrait être étendue au cas continu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of multi-modal and multi-sensor images is nowadays of paramount importance for Earth Observation (EO) applications. There exist a variety of methods that aim at fusing the different sources of information to obtain a compact representation of such datasets. However, for change detection existing methods are often unable to deal with heterogeneous image sources and very few consider possible nonlinearities in the data. Additionally, the availability of labeled information is very limited in change detection applications. For these reasons, we present the use of a semi-supervised kernel-based feature extraction technique. It incorporates a manifold regularization accounting for the geometric distribution and jointly addressing the small sample problem. An exhaustive example using Landsat 5 data illustrates the potential of the method for multi-sensor change detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates a simple procedure to estimate robustly the mean of an asymmetric distribution. The procedure removes the observations which are larger or smaller than certain limits and takes the arithmetic mean of the remaining observations, the limits being determined with the help of a parametric model, e.g., the Gamma, the Weibull or the Lognormal distribution. The breakdown point, the influence function, the (asymptotic) variance, and the contamination bias of this estimator are explored and compared numerically with those of competing estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The interhemispheric asymmetries that originate from connectivity-related structuring of the cerebral cortex are compromised in schizophrenia (SZ). Recently, we have revealed the whole-head topography of EEG synchronization in SZ (Jalili et al. 2007; Knyazeva et al. 2008). Here we extended the analysis to assess the abnormality in the asymmetry of synchronization, which is further motivated by the evidence that the interhemispheric asymmetries suspected to be abnormal in SZ originate from the connectivity-related structuring of the cortex. Methods: Thirteen right-handed SZ patients and thirteen matched controls, participated in this study and the multichannel (128) EEGs were recorded for 3-5 minutes at rest. Then, Laplacian EEG (LEEG) were calculated using a 2-D spline. The LEEGs were analysis through calculating the power spectral density using Welch's average periodogram method. Furthermore, using a state-space based multivariate synchronization measure, S-estimator, we analyzed the correlate of the functional cortico-cortical connectivity in SZ patients compared to the controls. The values of S-estimator were obtained at three different special scales: first-order neighbors for each sensor location, second-order neighbors, and the whole hemisphere. The synchronization measures based on LEEG of alpha and beta bands were applied and tuned to various spatial scales including local, intraregional, and long-distance levels. To assess the between-group differences, we used a permutation version of Hotelling's T2 test. For correlation analysis, Spearman Rank Correlation was calculated. Results: Compared to the controls, who had rightward asymmetry at a local level (LEEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (first- and second-order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization. This deviation in asymmetry across the anterior-to-posterior axis is consistent with the cerebral form of the so-called Yakovlevian or anticlockwise cerebral torque. Moreover, the negative occipital and positive frontal asymmetry values suggest higher regional synchronization among the left occipital and the right frontal locations relative to their symmetrical counterparts. Correlation analysis linked the posterior intraregional and hemispheric abnormalities to the negative SZ symptoms, whereas the asymmetry of LEEG power appeared to be weakly coupled to clinical ratings. The posterior intraregional abnormalities of asymmetry were shown to increase with the duration of the disease. The tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern in normal subjects and SZ patients, are discussed. Conclusions: Overall, our findings reveal the abnormalities in the synchronization asymmetry in SZ patients and heavy involvement of the right hemisphere in these abnormalities. These results indicate that anomalous asymmetry of cortico-cortical connections in schizophrenia is amenable to electrophysiological analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To better understand the structure of the Patient Assessment of Chronic Illness Care (PACIC) instrument. More specifically to test all published validation models, using one single data set and appropriate statistical tools. DESIGN: Validation study using data from cross-sectional survey. PARTICIPANTS: A population-based sample of non-institutionalized adults with diabetes residing in Switzerland (canton of Vaud). MAIN OUTCOME MEASURE: French version of the 20-items PACIC instrument (5-point response scale). We conducted validation analyses using confirmatory factor analysis (CFA). The original five-dimension model and other published models were tested with three types of CFA: based on (i) a Pearson estimator of variance-covariance matrix, (ii) a polychoric correlation matrix and (iii) a likelihood estimation with a multinomial distribution for the manifest variables. All models were assessed using loadings and goodness-of-fit measures. RESULTS: The analytical sample included 406 patients. Mean age was 64.4 years and 59% were men. Median of item responses varied between 1 and 4 (range 1-5), and range of missing values was between 5.7 and 12.3%. Strong floor and ceiling effects were present. Even though loadings of the tested models were relatively high, the only model showing acceptable fit was the 11-item single-dimension model. PACIC was associated with the expected variables of the field. CONCLUSIONS: Our results showed that the model considering 11 items in a single dimension exhibited the best fit for our data. A single score, in complement to the consideration of single-item results, might be used instead of the five dimensions usually described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a review of methodology for semi-supervised modeling with kernel methods, when the manifold assumption is guaranteed to be satisfied. It concerns environmental data modeling on natural manifolds, such as complex topographies of the mountainous regions, where environmental processes are highly influenced by the relief. These relations, possibly regionalized and nonlinear, can be modeled from data with machine learning using the digital elevation models in semi-supervised kernel methods. The range of the tools and methodological issues discussed in the study includes feature selection and semisupervised Support Vector algorithms. The real case study devoted to data-driven modeling of meteorological fields illustrates the discussed approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interspecific competition, life history traits, environmental heterogeneity and spatial structure as well as disturbance are known to impact the successful dispersal strategies in metacommunities. However, studies on the direction of impact of those factors on dispersal have yielded contradictory results and often considered only few competing dispersal strategies at the same time. We used a unifying modeling approach to contrast the combined effects of species traits (adult survival, specialization), environmental heterogeneity and structure (spatial autocorrelation, habitat availability) and disturbance on the selected, maintained and coexisting dispersal strategies in heterogeneous metacommunities. Using a negative exponential dispersal kernel, we allowed for variation of both species dispersal distance and dispersal rate. We showed that strong disturbance promotes species with high dispersal abilities, while low local adult survival and habitat availability select against them. Spatial autocorrelation favors species with higher dispersal ability when adult survival and disturbance rate are low, and selects against them in the opposite situation. Interestingly, several dispersal strategies coexist when disturbance and adult survival act in opposition, as for example when strong disturbance regime favors species with high dispersal abilities while low adult survival selects species with low dispersal. Our results unify apparently contradictory previous results and demonstrate that spatial structure, disturbance and adult survival determine the success and diversity of coexisting dispersal strategies in competing metacommunities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questionnaire studies indicate that high-anxious musicians may suffer from hyperventilation symptoms before and/or during performance. Reported symptoms include amongst others shortness of breath, fast or deep breathing, dizziness and thumping heart. However, no study has yet tested if these self-reported symptoms reflect actual cardio respiratory changes. Disturbances in breathing patterns and hyperventilation may contribute to the often observed poorer performance of anxious musicians under stressful performance situations. The main goal of this study is to determine if music performance anxiety is manifest physiologically in specific correlates of cardio respiratory activity. We studied 74 professional music students divided into two groups (i.e. high-anxious and lowanxious) based on their self-reported performance anxiety in three distinct situations: baseline, private performance (without audience), public performance (with audience). We measured a) breathing patterns, end-tidal carbon dioxide (EtCO2, a good non-invasive estimator for hyperventilation), ECG and b) self-perceived emotions and self-perceived physiological activation. The poster will concentrate on the preliminary results of this study. The focus will be a) on differences between high-anxious and low-anxious musicians regarding breaths per minute and heart rate and b) on the response coherence between self-perceived palpitations and actual heart rate.