251 resultados para intracelular signaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the major families of voltage-gated Ca(2+) channels, the low-voltage-activated channels formed by the Ca(v)3 subunits, referred to as T-type Ca(2+) channels, have recently gained increased interest in terms of the intracellular Ca(2+) signals generated upon their activation. Here, we provide an overview of recent reports documenting that T-type Ca(2+) channels act as an important Ca(2+) source in a wide range of neuronal cell types. The work is focused on T-type Ca(2+) channels in neurons, but refers to non-neuronal cells in cases where exemplary functions for Ca(2+) entering through T-type Ca(2+) channels have been described. Notably, Ca(2+) influx through T-type Ca(2+) channels is the predominant Ca(2+) source in several neuronal cell types and carries out specific signaling roles. We also emphasize that Ca(2+) signaling through T-type Ca(2+) channels occurs often in select subcellular compartments, is mediated through strategically co-localized targets, and is exploited for unique physiological functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The control of glucose and energy homeostasis, including feeding behaviour, is tightly regulated by gut-derived peptidic and nonpeptidic endocrine mediators, autonomic nervous signals, as well as nutrients such as glucose. We will review recent findings on the role of the gastrointestinal tract innervation and of portal vein glucose sensors; we will review selected data on the action of gastrointestinally released hormones. RECENT FINDINGS: The involvement of mechanosensory vagal afferents in postprandial meal termination has been clarified using mouse models with selective impairments of genes required for development of mechanosensory fibres. These activate central glucogen-like peptide-1/glucogen-like peptide-2 containing ascending pathways linking the visceroceptive brainstem neurons to hypothalamic nuclei. Mucosal terminals comprise the chemosensory vagal afferents responsive to postprandially released gastrointestinal hormones. The mechanism by which the hepatoportal glucose sensor stimulates glucose utilization by muscles was demonstrated, using genetically modified mice, to be insulin-independent but to require GLUT4 and AMP-kinase. This sensor is a key site of glucogen-like peptide-1 action and plays a critical role in triggering first phase insulin secretion. PeptideYY and ghrelin target intracerebral receptors as they are bidirectionally transported across the blood brain barrier. The anorectic functions of peripherally released peptideYY may however be mediated both via vagal afferents and intracerebral Y2 receptors in the brainstem and arcuate nucleus. SUMMARY: These recent findings demonstrate that the use of improved anatomical and physiological techniques and animal models with targeted gene modifications lead to an improved understanding of the complex role of gastrointestinal signals in the control of energy homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last several years, the mechanism of IFN gamma-dependent signal transduction has been the focus of intense investigation. This research has recently culminated in the elucidation of a comprehensive molecular understanding of the events that underlie IFN gamma-induced cellular responses. The structure and function of the IFN gamma receptor have been defined. The mechanism of IFN gamma signal transduction has been largely elucidated, and the physiologic relevance of this process validated. Most recently, the molecular events that link receptor ligation to signal transduction have been established. Together these insights have produced a model of IFN gamma signaling that is nearly complete and that serves as a paradigm for signaling by other members of the cytokine receptor superfamily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphatic vasculature is increasingly recognized as an important factor both in the regulation of normal tissue homeostasis and immune response and in many diseases, such as inflammation, cancer, obesity, and hypertension. In the last few years, in addition to the central role of vascular endothelial growth factor (VEGF)-C/VEGF receptor-3 signaling in lymphangiogenesis, significant new insights were obtained about Notch, transforming growth factor β/bone morphogenetic protein, Ras, mitogen-activated protein kinase, phosphatidylinositol 3 kinase, and Ca(2+)/calcineurin signaling pathways in the control of growth and remodeling of lymphatic vessels. An emerging picture of lymphangiogenic signaling is complex and in many ways distinct from the regulation of angiogenesis. This complexity provides new challenges, but also new opportunities for selective therapeutic targeting of lymphatic vasculature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complexity of the signaling network that underlies astrocyte-synapse interactions may seem discouraging when tackled from a theoretical perspective. Computational modeling is challenged by the fact that many details remain hitherto unknown and conventional approaches to describe synaptic function are unsuitable to explain experimental observations when astrocytic signaling is taken into account. Supported by experimental evidence is the possibility that astrocytes perform genuine information processing by means of their calcium signaling and are players in the physiological setting of the basal tone of synaptic transmission. Here we consider the plausibility of this scenario from a theoretical perspective, focusing on the modulation of synaptic release probability by the astrocyte and its implications on synaptic plasticity. The analysis of the signaling pathways underlying such modulation refines our notion of tripartite synapse and has profound implications on our understanding of brain function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblast growth factor (FGF) signaling is critical for a broad range of developmental processes. In 2003, Fibroblast growth factor receptor 1 (FGFR1) was discovered as a novel locus causing both forms of isolate GnRH Deficiency, Kallmann syndrome [KS with anosmia] and normosmic idiopathic hypogonadotropic hypogonadism [nIHH] eventually accounting for approximately 10% of gonadotropin-releasing hormone (GnRH) deficiency cases. Such cases are characterized by a broad spectrum of reproductive phenotypes from severe congenital forms of GnRH deficiency to reversal of HH. Additionally, the variable expressivity of both reproductive and non-reproductive phenotypes among patients and family members harboring the identical FGFR1 mutations has pointed to a more complex, oligogenic model for GnRH deficiency. Further, reversal of HH in patients carrying FGFR1 mutations suggests potential gene-environment interactions in human GnRH deficiency disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic defects in autosomal-dominant polycystic kidney disease (ADPKD) promote cystic growth of renal tubules, at least in part by stimulating the accumulation of cAMP. How renal cAMP levels are regulated is incompletely understood. We show that cAMP and the expression of its synthetic enzyme adenylate cyclase-6 (AC6) are up-regulated in cystic kidneys of Bicc1(-)(/-) knockout mice. Bicc1, a protein comprising three K homology (KH) domains and a sterile alpha motif (SAM), is expressed in proximal tubules. The KH domains independently bind AC6 mRNA and recruit the miR-125a from Dicer, whereas the SAM domain enables silencing by Argonaute and TNRC6A/GW182. Bicc1 similarly induces silencing of the protein kinase inhibitor PKIα by miR-27a. Thus, Bicc1 is needed on these target mRNAs for silencing by specific miRNAs. The repression of AC6 by Bicc1 might explain why cysts in ADPKD patients preferentially arise from distal tubules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4(+) T helper (Th) 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4(+) T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1) and Notch2 (N2) are expressed on activated CD4(+) T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2(ΔCD4Cre)) were infected with the protozoan parasite Leishmania major. N1N2(ΔCD4Cre) mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4(+) T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4(+) T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Activation of innate pattern-recognition receptors promotes CD4+ T-cell-mediated autoimmune myocarditis and subsequent inflammatory cardiomyopathy. Mechanisms that counterregulate exaggerated heart-specific autoimmunity are poorly understood. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice by immunization with α-myosin heavy chain peptide and complete Freund's adjuvant. Together with interferon-γ, heat-killed Mycobacterium tuberculosis, an essential component of complete Freund's adjuvant, converted CD11b(hi)CD11c(-) monocytes into tumor necrosis factor-α- and nitric oxide synthase 2-producing dendritic cells (TipDCs). Heat-killed M. tuberculosis stimulated production of nitric oxide synthase 2 via Toll-like receptor 2-mediated nuclear factor-κB activation. TipDCs limited antigen-specific T-cell expansion through nitric oxide synthase 2-dependent nitric oxide production. Moreover, they promoted nitric oxide synthase 2 production in hematopoietic and stromal cells in a paracrine manner. Consequently, nitric oxide synthase 2 production by both radiosensitive hematopoietic and radioresistant stromal cells prevented exacerbation of autoimmune myocarditis in vivo. CONCLUSIONS: Innate Toll-like receptor 2 stimulation promotes formation of regulatory TipDCs, which confine autoreactive T-cell responses in experimental autoimmune myocarditis via nitric oxide. Therefore, activation of innate pattern-recognition receptors is critical not only for disease induction but also for counterregulatory mechanisms, protecting the heart from exaggerated autoimmunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type I interferon (IFN-α/β) induction upon viral infection contributes to the early antiviral host defense and ensures survival until the onset of adaptive immunity. Many viral infections lead to an acute, transient IFN expression which peaks a few hours after infection and reverts to initial levels after 24 to 36 h. Robust IFN expression often is conferred by specialized plasmacytoid dendritic cells (pDC) and may depend on positive-feedback amplification via the type I IFN receptor (IFNAR). Here, we show that mice infected with Thogoto virus (THOV), which is an influenza virus-like orthomyxovirus transmitted by ticks, mounted sustained IFN responses that persisted up to 72 h after infection. For this purpose, we used a variant of THOV lacking its IFN-antagonistic protein ML, an elongated version of the matrix (M) protein [THOV(ΔML)]. Of note, large amounts of type I IFN were also found in the serum of mice lacking the IFNAR. Early IFN-α expression seemed to depend on Toll-like receptor (TLR) signaling, whereas prolonged IFN-α responses strictly depended on RIG-I-like helicase (RLH) signaling. Unexpectedly, THOV(ΔML)-infected bone marrow-derived pDC (BM-pDC) produced only moderate IFN levels, whereas myeloid DC (BM-mDC) showed massive IFN induction that was IPS-1-dependent, suggesting that BM-mDC are involved in the massive, sustained IFN production in THOV(ΔML)-infected animals. Thus, our data are compatible with the model that THOV(ΔML) infection is sensed in the acute phase via TLR and RLH systems, whereas at later time points only RLH signaling is responsible for the induction of sustained IFN responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient priming of adaptive immunity depends on danger signals provided by innate immune pathways. As an example, inflammasome-mediated activation of caspase-1 and IL-1beta is crucial for the development of reactive T cells targeting sensitizers like dinitrofluorobenzene (DNFB). Surprisingly, DNFB and dinitrothiocyanobenzene provide cross-reactive Ags yet drive opposing, sensitizing vs tolerizing, T cell responses. In this study, we show that, in mice, inflammasome-signaling levels can be modulated to turn dinitrothiocyanobenzene into a sensitizer and DNFB into a tolerizer, and that it correlates with the IL-6 and IL-12 secretion levels, affecting Th1, Th17, and regulatory T cell development. Hence, our data provide the first evidence that the inflammasome can define the type of adaptive immune response elicited by an Ag, and hint at new strategies to modulate T cell responses in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transducer and activator of transcription (STAT) 3 is a pleiotropic transcription factor with important functions in cytokine signaling in a variety of tissues. However, the role of STAT3 in the intestinal epithelium is not well understood. We demonstrate that development of colonic inflammation is associated with the induction of STAT3 activity in intestinal epithelial cells (IECs). Studies in genetically engineered mice showed that epithelial STAT3 activation in dextran sodium sulfate colitis is dependent on interleukin (IL)-22 rather than IL-6. IL-22 was secreted by colonic CD11c(+) cells in response to Toll-like receptor stimulation. Conditional knockout mice with an IEC-specific deletion of STAT3 activity were highly susceptible to experimental colitis, indicating that epithelial STAT3 regulates gut homeostasis. STAT3(IEC-KO) mice, upon induction of colitis, showed a striking defect of epithelial restitution. Gene chip analysis indicated that STAT3 regulates the cellular stress response, apoptosis, and pathways associated with wound healing in IECs. Consistently, both IL-22 and epithelial STAT3 were found to be important in wound-healing experiments in vivo. In summary, our data suggest that intestinal epithelial STAT3 activation regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.