57 resultados para hyperbranched polymers, ferrocene, block copolymers
Resumo:
Polyhydroxyalkanoates (PHA) are polyesters of bacterial origin that have properties of biodegradable plastics and elastomers. Synthesis of PHA in crop plants would allow the large-scale production and use of these biodegradable and renewable polymers as substitutes for petroleum-derived plastics. Synthesis of a diversity of PHAs in plants, such as Arabidopsis thaliana, rapeseed, corn and cotton, has been demonstrated through the genetic engineering of metabolic pathways in the cytoplasm, plastid and peroxisome. PHA can also be used as a novel tool to study various aspects of plant metabolism, such as the regulation of carbon flux to the fatty acid biosynthetic and degradation pathways.
Resumo:
The amiloride-sensitive epithelial Na channel (ENaC) is a heteromultimeric channel made of three alpha beta gamma subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short segment preceding the second membrane-spanning domain (the pre-M2 segment) amino acid residues involved in ion permeation and critical for channel block by amiloride. Cys substitutions of Gly residues in beta and gamma subunits at position beta G525 and gamma G537 increased the apparent inhibitory constant (Ki) for amiloride by > 1,000-fold and decreased channel unitary current without affecting ion selectivity. The corresponding mutation S583 to C in the alpha subunit increased amiloride Ki by 20-fold, without changing channel conducting properties. Coexpression of these mutated alpha beta gamma subunits resulted in a non-conducting channel expressed at the cell surface. Finally, these Cys substitutions increased channel affinity for block by external Zn2+ ions, in particular the alpha S583C mutant showing a Ki for Zn2+ of 29 microM. Mutations of residues alpha W582L, or beta G522D also increased amiloride Ki, the later mutation generating a Ca2+ blocking site located 15% within the membrane electric field. These experiments provide strong evidence that alpha beta gamma ENaCs are pore-forming subunits involved in ion permeation through the channel. The pre-M2 segment of alpha beta gamma subunits may form a pore loop structure at the extracellular face of the channel, where amiloride binds within the channel lumen. We propose that amiloride interacts with Na+ ions at an external Na+ binding site preventing ion permeation through the channel pore.
Resumo:
The epithelial Na+ channel ENaC mediates transepithelial Na+ transport in the distal kidney, the colon, and the lung and is a key element for the maintenance of Na+ balance and the regulation of blood pressure. Mutagenesis studies have identified residues alphaS583 and the homologous betaG525 and gammaG537 in the outer pore entrance that are critical for ENaC block by the K+-sparing diuretic amiloride. The aim of the present study was to determine first, whether these residues are part of the amiloride binding site, and second, whether they are general determinants of ENaC block by amiloride and its derivatives. Kinetic analysis of the association and dissociation rates of amiloride and benzamil to ENaC showed that mutation of residue alphaS583C and the homologous betaG525C increased the dissociation rate of the drugs from the binding site, with little changes in their association rate. Thus, these mutations destabilize the binding interaction between the blockers and the receptor on the channel, favoring the unbinding of the ligand. This strongly suggests that they are part of the binding site. Because mutations of alphaS583, betaG525, and gammaG537 have similar effects on amiloride, benzamil, and triamterene block, we conclude that these three ENaC blockers share a common receptor within the ion channel pore.
Resumo:
First-degree atrio-ventricular (AV) block is defined as a PR interval longer than 200 ms. If too long, it can become clinically relevant and may mimic a pacemaker syndrome. We report the case of a young woman with a long PR interval, probably congenital, with episodes of syncope and dizziness since childhood. Pseudo-pacemaker syndrome is rare and is a Class IIa recommendation for a pacemaker implantation. A dual-chamber pacemaker was implanted and short AV delay was programmed, with rapid clinical improvement.
Resumo:
Uplift gradients can provide the location of highly strained zones, which can be considered to be seismic. The Turan block (Central Asia) contains zones with high gradient of uplift velocities, above the threshold 0.04mm km-1year-1. Some of these zones are associated with important seismic activity and others are not correlated with any recent important recorded earthquakes, however, recent faults scarps as well as diverted rivers may indicate a recent tectonic activity. This threshold of gradient is probably a significant rheologic property of the upper crust. On the basis of these considerations the Uzboy river area is proposed as a potential high seismic hazard zone.
Resumo:
Methadone inhibits the cardiac potassium channel hERG and can cause a prolonged QT interval. Methadone is chiral but its therapeutic activity is mainly due to (R)-methadone. Whole-cell patch-clamp experiments using cells expressing hERG showed that (S)-methadone blocked the hERG current 3.5-fold more potently than (R)-methadone (IC50s (half-maximal inhibitory concentrations) at 37 degrees C: 2 and 7 microM). As CYP2B6 slow metabolizer (SM) status results in a reduced ability to metabolize (S)-methadone, electrocardiograms, CYP2B6 genotypes, and (R)- and (S)-methadone plasma concentrations were obtained for 179 patients receiving (R,S)-methadone. The mean heart-rate-corrected QT (QTc) was higher in CYP2B6 SMs (*6/*6 genotype; 439+/-25 ms; n=11) than in extensive metabolizers (non *6/*6; 421+/-25 ms; n=168; P=0.017). CYP2B6 SM status was associated with an increased risk of prolonged QTc (odds ratio=4.5, 95% confidence interval=1.2-17.7; P=0.03). This study reports the first genetic factor implicated in methadone metabolism that may increase the risk of cardiac arrhythmias and sudden death. This risk could be reduced by the administration of (R)-methadone.
Resumo:
Lyme disease is the most common tick-borne disease in Europe and in the United States. In comparison to dermatological, neurological and rheumatological manifestations, heart disease is quite rare. Atrioventricular heart block is nevertheless the most frequent cardiological manifestation. We hereby report the case of a patient with high degree heart block due to Lyme disease. We focus on the electrocardiographical evolution during antibiotic therapy, as well as on microbiological and diagnostic aspects. Lyme disease is a rare cause of conduction disturbances but it is treatable and potentially reversible.
Resumo:
We investigate the influence of knotting and chirality on the shape of knotted polygons forming trefoil knots compared to unknotted polygons by aligning independent configurations along their principal inertial axes. While for six edge polygons forming trefoil knots the chiral knotted structure is revealed in the isodensity profiles, the distinct chiral signature of the trefoil is significantly diminished with 24 edges. We observe that as the number of edges in the polygons increases, the cumulative shapes of trefoil knots progressively approach the cumulative shapes for unknotted polygons.
Resumo:
PURPOSE We have previously shown that retinal stem cells (RSCs) can be isolated from the radial glia population of the newborn mouse retina (Angénieux et al., 2006). These RSCs have a great capacity to renew and to generate a large number of neurons including cells differentiated towards the photoreceptor lineage (Mehri-Soussi et al., 2006). However, recent published results from our lab revealed that such cells have a poor integration and survival rate after grafting. The uncontrolled environment of a retina seems to prevent good integration and survival after grafting in vivo. To bypass this problem, we are evaluating the possibility of generating in vitro a hemi-retinal tissue before transplantation. METHODS RSC were expanded and cells passaged <10 were seeded in a solution containing poly-ethylene-glycol (PEG) polymer based hydrogels crosslinked with peptides that are chosen to be substrates for matrix metalloproteinases. Various doses of cross linkers peptides allowing connections between PEG polymers were tested. Different growth factors were studied to stimulate cell proliferation and differentiation. RESULTS Cells survived only in the presence of EGF and FGF-2 and generated colonies with a sphere shape. No cells migrated within the gel. To improve the migration and the repartition of the cells in the gels, the integrin ligand RGDSP was added into the gel. In the presence of FGF-2 and EGF, newly formed cell clusters appeared by cell proliferation within several days, but again no outspreading of cells was observed. No difference was even seen when the stiffness of the hydrogels or the concentration of the integrin ligand RGDSP were changed. However, our preliminary results show that RSCs still form spheres when laminin is entrapped in the gel, but they started to spread out having a neuronal morphology after around 2 weeks. The neuronal population was assessed by the presence of the neuronal marker b-tubulin-III. This differentiation was achieved after successive steps of stimulations including FGF-2 and EGF, and then only FGF-2. Glial cells were also present. Further characterizations are under process. CONCLUSIONS RSC can be grown in 3D. Preliminary results show that neuronal cell phenotype acquisition can be instructed by exogenous stimulations and factors linked to the gel. Further developments are necessary to form a homogenous tissue containing retinal cells.
Resumo:
The study area. located north of Konva (Central Turkey), is composed of Silurian to Cretaceous metamorphosed rocks. The lower unit of the oldest formation (Silurian-Early Permian) is mostly made up of Silurian-Early Carboniferous metacarbonates. These rocks pass laterally and vertically to Devonian-Early Permian series having continental margin, shallow water and pelagic characteristics. They are intruded or juxtaposed to different kinds of metamagmatic rocks. which show MORB. continental arc and within plate characteristics. The Palaeozoic units are covered unconformably by Triassic-Cretaceous metasedimentary units. All these rocks are overthrusted by Mesozoic ophiolites. The Palaeozoic sequence can be seen as a northern Palaeotethys passive, then active margin. The northward subduction of the Palaeotethys ocean during the Carboniferous-Triassic times, induced the development of a magmatic arc and fore-arc sequence (Carboniferous-Permian). Before the Early Triassic (?Late Permian) time. the fore-arc sequence was uplifted above sea level and eroded. The Triassic sequences are regarded as marking the onset of back-arc opening and detachment of the Anatolian Konya block from the active Eurasian margin. Finally. a suture zone formed during the Carman between the Konya region and the Menderes-Tauride Cimmerian block due to the closing of Palaeotethvs. This geodynamic evolution can be correlated with the evolution of the Karaburun sequence in western Turkey.
Resumo:
Using numerical simulations of pairs of long polymeric chains confined in microscopic cylinders, we investigate consequences of double-strand DNA breaks occurring in independent topological domains, such as these constituting bacterial chromosomes. Our simulations show a transition between segregated and mixed state upon linearization of one of the modelled topological domains. Our results explain how chromosomal organization into topological domains can fulfil two opposite conditions: (i) effectively repulse various loops from each other thus promoting chromosome separation and (ii) permit local DNA intermingling when one or more loops are broken and need to be repaired in a process that requires homology search between broken ends and their homologous sequences in closely positioned sister chromatid.