54 resultados para glycosylation reaction
Resumo:
BACKGROUND: Alpha-dystroglycan (alpha-DG) is a cell surface receptor providing a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. During its biosynthesis, alpha-DG undergoes specific and unusual O-glycosylation crucial for its function as a high-affinity cellular receptor for ECM proteins. METHODOLOGY/PRINCIPAL FINDINGS: We report that expression of functionally glycosylated alpha-DG during thymic development is tightly regulated in developing T cells and largely confined to CD4(-)CD8(-) double negative (DN) thymocytes. Ablation of DG in T cells had no effect on proliferation, migration or effector function but did reduce the size of the thymus due to a significant loss in absolute numbers of thymocytes. While numbers of DN thymocytes appeared normal, a marked reduction in CD4(+)CD8(+) double positive (DP) thymocytes occurred. In the periphery mature naïve T cells deficient in DG showed both normal proliferation in response to allogeneic cells and normal migration, effector and memory T cell function when tested in acute infection of mice with either lymphocytic choriomeningitis virus (LCMV) or influenza virus. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that DG function is modulated by glycosylation during T cell development in vivo and that DG is essential for normal development and differentiation of T cells.
Resumo:
The major goal of evolutionary thermal biology is to understand how variation in temperature shapes phenotypic evolution. Comparing thermal reaction norms among populations from different thermal environments allows us to gain insights into the evolutionary mechanisms underlying thermal adaptation. Here, we have examined thermal adaptation in six wild populations of the fruit fly (Drosophila melanogaster) from markedly different natural environments by analyzing thermal reaction norms for fecundity, thorax length, wing area, and ovariole number under ecologically realistic fluctuating temperature regimes in the laboratory. Contrary to expectation, we found only minor differences in the thermal optima for fecundity among populations. Differentiation among populations was mainly due to differences in absolute (and partly also relative) thermal fecundity performance. Despite significant variation among populations in the absolute values of morphological traits, we observed only minor differentiation in their reaction norms. Overall, the thermal reaction norms for all traits examined were remarkably similar among different populations. Our results therefore suggest that thermal adaptation in D. melanogaster predominantly involves evolutionary changes in absolute trait values rather than in aspects of thermal reaction norms.
Resumo:
Congenital disorders of glycosylation (CDG) are a family of multisystem inherited disorders caused by defects in the biosynthesis of N- or O-glycans. Among the many different subtypes of CDG, the defect of a mannosyltransferase encoded by the human ALG3 gene (chromosome 3q27) is known to cause CDG Id. Six patients with CDG Id have been described in the literature so far. We further delineate the clinical, biochemical, neuroradiological and molecular features of CDG Id by reporting an additional patient bearing a novel missense mutation in the ALG3 gene. All patients with CDG Id display a slowly progressive encephalopathy with microcephaly, severe psychomotor retardation and epileptic seizures. They also share some typical dysmorphic features but they do not present the multisystem involvement observed in other CDG syndromes or any biological marker abnormalities. Unusually marked osteopenia is a feature in some patients and may remain undiagnosed until revealed by pathological fractures. Serum transferrin screening for CDG should be extended to all patients with encephalopathy of unknown origin, even in the absence of multisystem involvement.
Resumo:
Les pressions écologiques peuvent varier tant en nature qu'en intensité dans le temps et l'espace. C'est pourquoi, un phénotype unique ne peut pas forcément conférer la meilleure valeur sélective. La plasticité phénotypique peut être un moyen de s'accommoder de cette situation, en augmentant globalement la tolérance aux changements environnementaux. Comme pour tout trait de caractère, une variation génétique doit persister pour qu'évoluent les traits plastiques dans une population donnée. Cependant, les pressions extérieures peuvent affecter l'héritabilité, et la direction de ces changements peut dépendre du caractère en question, de l'espèce mais aussi du type de stress. Dans la présente thèse, nous avons cherché à élucider les effets des pressions pathogéniques sur les phénotypes et la génétique quantitative de plusieurs traits plastiques chez les embryons de deux salmonidés, la palée (Coregonus palaea), et la truite de rivière (Salmo trutta). Les salmonidés se prêtent à de telles études du fait de leur extraordinaire variabilité morphologique, comportementale et des traits d'histoire de vie. Par ailleurs, avec le déclin des salmonidés dans le monde, il est important de savoir combien la variabilité génétique persiste dans les normes de réaction afin d'aider à prédire leur capacité à répondre aux changements de leur milieu. Nous avons observé qu'une augmentation de la croissance des communautés microbiennes symbiotiques entraînait une mortalité accrue et une éclosion précoce chez la palée, et dévoilait la variance génétique additive pour ces deux caractères (Chapitres 1-2). Bien qu'aucune variation génétique n'ait été trouvée pour les normes de réaction, nous avons observé une variabilité de la plasticité d'éclosion. Néanmoins, on a trouvé que les temps d'éclosion étaient corrélés entre les environnements, ce qui pourrait limiter l'évolution de la norme de réaction. Le temps d'éclosion des embryons est lié à la taille des géniteurs mâles, ce qui indique des effets pléiotropiques. Dans le Chapitre 3, nous avons montré qu'une interaction triple entre la souche bactérienne {Pseudomonas fluorescens}, l'état de dévelopement de l'hôte ainsi que ses gènes ont une influence sur la mortalité, le temps d'éclosion et la taille des alevins de la palée. Nous avons démontré qu'une variation génétique subsistait généralement dans les normes de réaction des temps d'éclosion, mais rarement pour la taille des alevins, et jamais pour la mortalité. Dans le même temps, nous avons exhibé que des corrélations entre environnements dépendaient des caractères phénotypiques, mais contrairement au Chapitre 2, nous n'avons pas trouvé de preuve de corrélations transgénérationnelles. Le Chapitre 4 complète le chapitre précédent, en se plaçant du point de vue moléculaire, et décrit comment le traitement d'embryons avec P. fluorescens s'est traduit par une régulation négative d'expression du CMH-I indépendemment de la souche bactérienne. Nous avons non seulement trouvé une variation génétique des caractères phénotypiques moyens, mais aussi de la plasticité. Les deux derniers chapitres traitent de l'investigation, chez la truite de rivière, des différences spécifiques entre populations pour des normes de réaction induites par les pathogènes. Dans le Chapitre 5, nous avons illustré que le métissage entre des populations génétiquement distinctes n'affectait en rien la hauteur ou la forme des normes de réaction d'un trait précoce d'histoire de vie suite au traitement pathogénique. De surcroît, en dépit de l'éclosion tardive et de la réduction de la taille des alevins, le traitement n'a pas modifié la variation héritable des traits de caractère. D'autre part, dans le Chapitre 6, nous avons démontré que le traitement d'embryons avec des stimuli contenus dans l'eau de conspécifiques infectés a entraîné des réponses propre à chaque population en terme de temps d'éclosion ; néanmoins, nous avons observé peu de variabilité génétique des normes de réaction pour ce temps d'éclosion au sein des populations. - Ecological stressors can vary in type and intensity over space and time, and as such, a single phenotype may not confer the highest fitness. Phenotypic plasticity can act as a means to accommodate this situation, increasing overall tolerance to environmental change. As with any trait, for plastic traits to evolve in a population, genetic variation must persist. However, environmental stress can alter trait heritability, and the direction of this shift can be trait, species, and stressor-dependent. In this thesis, we sought to understand the effects of pathogen stressors on the phenotypes and genetic architecture of several plastic traits in the embryos of two salmonids, the whitefish (Coregonus palaea), and the brown trout (Salmo trutta). Salmonids lend themselves to such studies because their extraordinary variability in morphological, behavioral, and life-history traits. Also, with declines in salmonids worldwide, knowing how much genetic variability persists in reaction norms may help predict their ability to respond to environmental change. We found that increasing growth of symbiotic microbial communities increased mortality and induced hatching in whitefish, and released additive genetic variance for both traits (Chapters 1-2). While no genetic variation was found for survival reaction norms, we did find variability in hatching plasticity. Nevertheless, hatching time was correlated across environments, which could constrain evolution of the reaction norm. Hatching time in the induced environment was also correlated to sire size, indicating pleiotropic effects. In Chapter 3 we report that a three-way interaction between bacterial strain (Pseudomonas fluorescens), host developmental stage, and host genetics impacted mortality, hatching time, and hatchling size in whitefish. We also showed that genetic variation generally persisted in hatching age reaction norms, but rarely for hatchling length, and never for mortality. At the same time, we demonstrated that cross-environmental correlations were trait-dependent, and unlike Chapter 2, we found no evidence of cross-generational correlations. Chapter 4 expands on the previous chapter, moving to the molecular level, and describes how treatment of embryos with P. fluorescens resulted in strain-independent downregulation of MHC class I. Genetic variation was evident not only in trait means, but also in plasticity. In the last two chapters, we investigated population level differences in pathogen- induced reaction norms in brown trout. In Chapter 5, we found that interbreeding between genetically distinct populations did not affect the elevation or shapes of the reaction norms of early life-history traits after pathogen challenge. Moreover, despite delaying hatching and reducing larval length, treatment produced no discernable shifts in heritable variation in traits. On the other hand, in Chapter 6, we found that treatment of embryos with water-borne cues from infected conspecifics elicited population-specific responses in terms of hatching time; however, we found little evidence of genetic variability in hatching reaction norms within populations. We have made considerable progress in understanding how pathogen stressors affect various early life-history traits in salmonid embryos. We have demonstrated that the effect of a particular stressor on heritable variation in these traits can vary according to the trait and species under consideration, in addition to the developmental stage of the host. Moreover, we found evidence of genetic variability in some, but not all reaction norms in whitefish and brown trout.
Resumo:
This study aimed to use the plantar pressure insole for estimating the three-dimensional ground reaction force (GRF) as well as the frictional torque (T(F)) during walking. Eleven subjects, six healthy and five patients with ankle disease participated in the study while wearing pressure insoles during several walking trials on a force-plate. The plantar pressure distribution was analyzed and 10 principal components of 24 regional pressure values with the stance time percentage (STP) were considered for GRF and T(F) estimation. Both linear and non-linear approximators were used for estimating the GRF and T(F) based on two learning strategies using intra-subject and inter-subjects data. The RMS error and the correlation coefficient between the approximators and the actual patterns obtained from force-plate were calculated. Our results showed better performance for non-linear approximation especially when the STP was considered as input. The least errors were observed for vertical force (4%) and anterior-posterior force (7.3%), while the medial-lateral force (11.3%) and frictional torque (14.7%) had higher errors. The result obtained for the patients showed higher error; nevertheless, when the data of the same patient were used for learning, the results were improved and in general slight differences with healthy subjects were observed. In conclusion, this study showed that ambulatory pressure insole with data normalization, an optimal choice of inputs and a well-trained nonlinear mapping function can estimate efficiently the three-dimensional ground reaction force and frictional torque in consecutive gait cycle without requiring a force-plate.
Resumo:
The calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein-3 (RAMP3) can assemble into a CRLR/RAMP3 heterodimeric receptor that exhibits the characteristics of a high affinity adrenomedullin receptor. RAMP3 participates in adrenomedullin (AM) binding via its extracellular N-terminus characterized by the presence of six highly conserved cysteine residues and four N-glycosylation consensus sites. Here, we assessed the usage of these conserved residues in cotranslational modifications of RAMP3 and addressed their role in functional expression of the CRLR/RAMP3 receptor. Using a Xenopus oocyte expression system, we show that (i) RAMP3 is assembled with CRLR as a multiple N-glycosylated species in which two, three, or four consensus sites are used; (ii) elimination of all N-glycans in RAMP3 results in a significant inhibition of receptor [(125)I]AM binding and an increase in the EC(50) value for AM; (iii) several lines of indirect evidence indicate that each of the six cysteines is involved in disulfide bond formation; (iv) when all cysteines are mutated to serines, RAMP3 is N-glycosylated at all four consensus sites, suggesting that disulfide bond formation inhibits N-gylcosylation; and (v) elimination of all cysteines abolishes adrenomedullin binding and leads to a complete loss of receptor function. Our data demonstrate that cotranslational modifications of RAMP3 play a critical role in the function of the CRLR/RAMP3 adrenomedullin receptor.
Resumo:
This publication presents one of the first uses of silicon oxide nanoparticles to detect fingermarks. The study is not confined to showing successful detection of fingermarks, but is focused on understanding the mechanisms involved in the fingermark detection process. To gain such an understanding, various chemical groups are grafted onto the nanoparticle surface, and parameters such as the pH of the solutions or zeta potential are varied to study their influence on the detection. An electrostatic interaction has been the generally accepted hypothesis of interaction between nanoparticles and fingermarks, but the results of this research challenge that hypothesis, showing that the interaction is chemically driven. Carboxyl groups grafted onto the nanoparticle surfaces react with amine groups of the fingermark secretion. This formation of amide linkage between carboxyl and amine groups has further been favoured by catalyzing the reaction with a compound of diimide type. The research strategy adopted here ought to be applicable to all detection techniques using nanoparticles. For most of them the nature of the interaction remains poorly understood.
Resumo:
The relative occurrence of genetic variants of human alpha 1-acid glycoprotein (AGP) in relation to changes in glycosylation was studied in sera of patients with burn injury, media of cytokine-treated primary cultures of human hepatocytes and Hep 3B cells, and sera of transgenic mice expressing the human AGP-A gene. It is concluded (i) that the glycosylation of AGP was not dependent on its genetic expression and (ii) that both the variants determined by the AGP-A gene as well as by the AGP-B/B' genes are increased after inflammation or treatment with interleukins 1 and 6.
Resumo:
BACKGROUND: Dermatophytes are the main cause of onychomycoses, but various nondermatophyte filamentous fungi are often isolated from abnormal nails. The correct identification of the aetiological agent of nail infections is necessary in order to recommend appropriate treatment. OBJECTIVE: To evaluate a rapid polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay based on 28S rDNA for fungal identification in nails on a large number of samples in comparison with cultures. METHODS: Infectious fungi were analysed using PCR-RFLP in 410 nail samples in which fungal elements were observed in situ by direct mycological examination (positive samples). The results were compared with those previously obtained by culture of fungi on Sabouraud agar from the same nail samples. RESULTS: PCR-RFLP identification of fungi in nails allowed validation of the results obtained in culture when Trichophyton spp. grew from infected samples. In addition, nondermatophyte filamentous fungi could be identified with certainty as the infectious agents in onychomycosis, and discriminated from dermatophytes as well as from transient contaminants. The specificity of the culture results relative to PCR-RFLP appeared to be 81%, 71%, 52% and 63% when Fusarium spp., Scopulariopsis brevicaulis, Aspergillus spp. and Candida spp., respectively, grew on Sabouraud agar. It was also possible to identify the infectious agent when direct nail mycological examination showed fungal elements, but negative results were obtained from fungal culture. CONCLUSIONS: Improved sensitivity for the detection of fungi in nails was obtained using the PCR-RFLP assay. Rapid and reliable molecular identification of the infectious fungus can be used routinely and presents several important advantages compared with culture in expediting the choice of appropriate antifungal therapy.
Resumo:
Primary objectives: Awake surgeries of slow-growing tumours invading the brain and guided by direct electrical stimulation induce major brain reorganizations accompanied with slight impairments post-operatively. In most cases, these deficits are so slight after a few days that they are often not detectable on classical neuropsychological evaluations. Consequently, this study investigated whether simple visuo-manual reaction time paradigms would sign some level of functional asymmetries between both hemispheres. Importantly, the visual stimulus was located in the saggital plane in order to limit attentional biases and to focus mainly on the inter-hemispheric asymmetry. Methods and procedures: Three patients (aged 41, 59 and 59 years) after resections in parietal regions and a control group (age¼44, SD¼6.9) were compared during simple uni- and bimanual reaction times (RTs). Main outcomes and results: Longer RTs were observed for the contralesional compared to the ipsilesional hand in the unimanual condition. This asymmetry was reversed for the bimanual condition despite longer RTs. Conclusion and clinical implications: Reaction time paradigms are useful in these patients to monitor more precisely their functional deficits, especially their level of functional asymmetry, and to understand brain (re)organization following slowgrowing lesions.
Resumo:
A total of 49 wastewater samples from 23 different wastewater treatment plants (WWTPs) were analyzed using real-time quantitative polymerase chain reaction for the presence and quantity of thermotolerant campylobacters. Thermotolerant campylobacters were detected in 87.5% (21/24) and 64% (16/25) of untreated and treated wastewater samples, respectively. Their concentration was sufficiently high to be quantified in 20.4% (10/49) of the samples. In these samples, the concentration ranged from 68 000 to 2292 000 cells/L in untreated wastewater and from 10 800 to 28 000 cells/L in treated water. We conclude that thermotolerant campylobacters present a health hazard for workers at WWTPs in Switzerland. [Authors]
Resumo:
The Mouse Mammary Tumor Virus (MMTV) long terminal repeat contains an open reading frame (orf) of 960 nucleotides encoding a 36 kDa polypeptide with a putative transmembrane domain and five N-glycosylation sites in the N-terminal part of the protein. Transgenic mice bearing either the complete or the 3' terminal half of the orf sequence of MMTV-GR under the control of the SV40 promoter were raised. As shown previously by FACS analysis transgenic mice which express the complete orf gene have a significant deletion of V beta 14 expressing T cells at 6 weeks of age. Here we show that no clonal deletion of V beta 14 bearing T cells takes place in transgenic mice that contain orf sequences from the fifth ATG to the termination codon. The pattern of tissues expressing the truncated transgene was studied by the Polymerase Chain Reaction (PCR) and was very similar to the one obtained in the V beta 14 deleting animals. These data suggest that the amino-terminal portion of the ORF protein (pORF) is required for a superantigen function, while our previous data indicated that determinants from the carboxy-terminus play an important role for TCR V beta specificity.
Resumo:
Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs), oleic-acid-stabilized USPIO NPs (OA-USPIO NPs), and free oleic acid (OA) were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo₂ cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo₂ cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells exposed to OA utilized as a stabilizer for USPIO NPs is higly amplified compared to free OA, and is not observed in the absence of this lipid in NS-USPIO NPs.
Resumo:
Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.