60 resultados para finite games
Resumo:
The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.
Resumo:
In developmental research, the family has mainly been studied through dyadic interaction. Three-way interactions have received less attention, partly because of their complexity. This difficulty may be overcome by distinguishing between four hierarchically embedded functions in three-way interactions: (1) participation (inclusion of all participants), (2) organization (partners keeping to their roles), (3) focalization (sharing a common focus) and (4) affective contact (being in tune). We document this hierarchical model on a sample of 80 families observed in the Lausanne Trilogue Play situation across four different sites. Hierarchy between functions was demonstrated by means of Guttman scalability coefficient. Given the importance of the child's development in a threesome, the pertinence of this model for family assessment is discussed.
Resumo:
The Multiscale Finite Volume (MsFV) method has been developed to efficiently solve reservoir-scale problems while conserving fine-scale details. The method employs two grid levels: a fine grid and a coarse grid. The latter is used to calculate a coarse solution to the original problem, which is interpolated to the fine mesh. The coarse system is constructed from the fine-scale problem using restriction and prolongation operators that are obtained by introducing appropriate localization assumptions. Through a successive reconstruction step, the MsFV method is able to provide an approximate, but fully conservative fine-scale velocity field. For very large problems (e.g. one billion cell model), a two-level algorithm can remain computational expensive. Depending on the upscaling factor, the computational expense comes either from the costs associated with the solution of the coarse problem or from the construction of the local interpolators (basis functions). To ensure numerical efficiency in the former case, the MsFV concept can be reapplied to the coarse problem, leading to a new, coarser level of discretization. One challenge in the use of a multilevel MsFV technique is to find an efficient reconstruction step to obtain a conservative fine-scale velocity field. In this work, we introduce a three-level Multiscale Finite Volume method (MlMsFV) and give a detailed description of the reconstruction step. Complexity analyses of the original MsFV method and the new MlMsFV method are discussed, and their performances in terms of accuracy and efficiency are compared.
Resumo:
Cooperation in joint enterprises can easily break down when self-interests are in conflict with collective benefits, causing a tragedy of the commons. In such social dilemmas, the possibility for contributors to invest in a common pool-rewards fund, which will be shared exclusively among contributors, can be powerful for averting the tragedy, as long as the second-order dilemma (i.e. withdrawing contribution to reward funds) can be overcome (e.g. with second-order sanctions). However, the present paper reveals the vulnerability of such pool-rewarding mechanisms to the presence of reward funds raised by defectors and shared among them (i.e. anti-social rewarding), as it causes a cooperation breakdown, even when second-order sanctions are possible. I demonstrate that escaping this social trap requires the additional condition that coalitions of defectors fare poorly compared with pro-socials, with either (i) better rewarding abilities for the latter or (ii) reward funds that are contingent upon the public good produced beforehand, allowing groups of contributors to invest more in reward funds than groups of defectors. These results suggest that the establishment of cooperation through a collective positive incentive mechanism is highly vulnerable to anti-social rewarding and requires additional countermeasures to act in combination with second-order sanctions.
Resumo:
The results of numerous economic games suggest that humans behave more cooperatively than would be expected if they were maximizing selfish interests. It has been argued that this is because individuals gain satisfaction from the success of others, and that such prosocial preferences require a novel evolutionary explanation. However, in previous games, imperfect behavior would automatically lead to an increase in cooperation, making it impossible to decouple any form of mistake or error from prosocial cooperative decisions. Here we empirically test between these alternatives by decoupling imperfect behavior from prosocial preferences in modified versions of the public goods game, in which individuals would maximize their selfish gain by completely (100%) cooperating. We found that, although this led to higher levels of cooperation, it did not lead to full cooperation, and individuals still perceived their group mates as competitors. This is inconsistent with either selfish or prosocial preferences, suggesting that the most parsimonious explanation is imperfect behavior triggered by psychological drives that can prevent both complete defection and complete cooperation. More generally, our results illustrate the caution that must be exercised when interpreting the evolutionary implications of economic experiments, especially the absolute level of cooperation in a particular treatment.
Resumo:
BACKGROUND: Articular surfaces reconstruction is essential in total shoulder arthroplasty. Because of the limited glenoid bone support, thin glenoid component could improve anatomical reconstruction, but adverse mechanical effects might appear. METHODS: With a numerical musculoskeletal shoulder model, we analysed and compared three values of thickness of a typical all-polyethylene glenoid component: 2, 4 (reference) and 6mm. A loaded movement of abduction in the scapular plane was simulated. We evaluated the humeral head translation, the muscle moment arms, the joint force, the articular contact pattern, and the polyethylene and cement stress. Findings Decreasing polyethylene thickness from 6 to 2mm slightly increased humeral head translation and muscle moment arms. This induced a small decreased of the joint reaction force, but important increase of stress within the polyethylene and the cement mantel. Interpretation The reference thickness of 4mm seems a good compromise to avoid stress concentration and joint stuffing.
Resumo:
The multiscale finite-volume (MSFV) method has been derived to efficiently solve large problems with spatially varying coefficients. The fine-scale problem is subdivided into local problems that can be solved separately and are coupled by a global problem. This algorithm, in consequence, shares some characteristics with two-level domain decomposition (DD) methods. However, the MSFV algorithm is different in that it incorporates a flux reconstruction step, which delivers a fine-scale mass conservative flux field without the need for iterating. This is achieved by the use of two overlapping coarse grids. The recently introduced correction function allows for a consistent handling of source terms, which makes the MSFV method a flexible algorithm that is applicable to a wide spectrum of problems. It is demonstrated that the MSFV operator, used to compute an approximate pressure solution, can be equivalently constructed by writing the Schur complement with a tangential approximation of a single-cell overlapping grid and incorporation of appropriate coarse-scale mass-balance equations.
Resumo:
Microsatellite loci mutate at an extremely high rate and are generally thought to evolve through a stepwise mutation model. Several differentiation statistics taking into account the particular mutation scheme of the microsatellite have been proposed. The most commonly used is R(ST) which is independent of the mutation rate under a generalized stepwise mutation model. F(ST) and R(ST) are commonly reported in the literature, but often differ widely. Here we compare their statistical performances using individual-based simulations of a finite island model. The simulations were run under different levels of gene flow, mutation rates, population number and sizes. In addition to the per locus statistical properties, we compare two ways of combining R(ST) over loci. Our simulations show that even under a strict stepwise mutation model, no statistic is best overall. All estimators suffer to different extents from large bias and variance. While R(ST) better reflects population differentiation in populations characterized by very low gene-exchange, F(ST) gives better estimates in cases of high levels of gene flow. The number of loci sampled (12, 24, or 96) has only a minor effect on the relative performance of the estimators under study. For all estimators there is a striking effect of the number of samples, with the differentiation estimates showing very odd distributions for two samples.
On the evolution of harming and recognition in finite panmictic and infinite structured populations.
Resumo:
Natural selection may favor two very different types of social behaviors that have costs in vital rates (fecundity and/or survival) to the actor: helping behaviors, which increase the vital rates of recipients, and harming behaviors, which reduce the vital rates of recipients. Although social evolutionary theory has mainly dealt with helping behaviors, competition for limited resources creates ecological conditions in which an actor may benefit from expressing behaviors that reduce the vital rates of neighbors. This may occur if the reduction in vital rates decreases the intensity of competition experienced by the actor or that experienced by its offspring. Here, we explore the joint evolution of neutral recognition markers and marker-based costly conditional harming whereby actors express harming, conditional on actor and recipient bearing different conspicuous markers. We do so for two complementary demographic scenarios: finite panmictic and infinite structured populations. We find that marker-based conditional harming can evolve under a large range of recombination rates and group sizes under both finite panmictic and infinite structured populations. A direct comparison with results for the evolution of marker-based conditional helping reveals that, if everything else is equal, marker-based conditional harming is often more likely to evolve than marker-based conditional helping.
Resumo:
Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).