45 resultados para fault correction
Resumo:
Diffusion-weighting in magnetic resonance imaging (MRI) increases the sensitivity to molecular Brownian motion, providing insight in the micro-environment of the underlying tissue types and structures. At the same time, the diffusion weighting renders the scans sensitive to other motion, including bulk patient motion. Typically, several image volumes are needed to extract diffusion information, inducing also inter-volume motion susceptibility. Bulk motion is more likely during long acquisitions, as they appear in diffusion tensor, diffusion spectrum and q-ball imaging. Image registration methods are successfully used to correct for bulk motion in other MRI time series, but their performance in diffusion-weighted MRI is limited since diffusion weighting introduces strong signal and contrast changes between serial image volumes. In this work, we combine the capability of free induction decay (FID) navigators, providing information on object motion, with image registration methodology to prospectively--or optionally retrospectively--correct for motion in diffusion imaging of the human brain. Eight healthy subjects were instructed to perform small-scale voluntary head motion during clinical diffusion tensor imaging acquisitions. The implemented motion detection based on FID navigator signals is processed in real-time and provided an excellent detection performance of voluntary motion patterns even at a sub-millimetre scale (sensitivity≥92%, specificity>98%). Motion detection triggered an additional image volume acquisition with b=0 s/mm2 which was subsequently co-registered to a reference volume. In the prospective correction scenario, the calculated motion-parameters were applied to perform a real-time update of the gradient coordinate system to correct for the head movement. Quantitative analysis revealed that the motion correction implementation is capable to correct head motion in diffusion-weighted MRI to a level comparable to scans without voluntary head motion. The results indicate the potential of this method to improve image quality in diffusion-weighted MRI, a concept that can also be applied when highest diffusion weightings are performed.
Resumo:
The multiscale finite-volume (MSFV) method has been derived to efficiently solve large problems with spatially varying coefficients. The fine-scale problem is subdivided into local problems that can be solved separately and are coupled by a global problem. This algorithm, in consequence, shares some characteristics with two-level domain decomposition (DD) methods. However, the MSFV algorithm is different in that it incorporates a flux reconstruction step, which delivers a fine-scale mass conservative flux field without the need for iterating. This is achieved by the use of two overlapping coarse grids. The recently introduced correction function allows for a consistent handling of source terms, which makes the MSFV method a flexible algorithm that is applicable to a wide spectrum of problems. It is demonstrated that the MSFV operator, used to compute an approximate pressure solution, can be equivalently constructed by writing the Schur complement with a tangential approximation of a single-cell overlapping grid and incorporation of appropriate coarse-scale mass-balance equations.
Resumo:
X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is a genetic disorder characterized by absence or deficient function of hair, teeth and sweat glands. Affected children may experience life-threatening high fever resulting from reduced ability to sweat. Mice with the Tabby phenotype share many symptoms with human XLHED patients because both phenotypes are caused by mutations of the syntenic ectodysplasin A gene (Eda) on the X chromosome. Two main splice variants of Eda, encoding EDA1 and EDA2, engage the tumor necrosis factor (TNF) family receptors EDAR and XEDAR, respectively. The EDA1 protein, acting through EDAR, is essential for proper formation of skin appendages; the functions of EDA2 and XEDAR are not known. EDA1 must be proteolytically processed to a soluble form to be active. Here, we show that treatment of pregnant Tabby mice with a recombinant form of EDA1, engineered to cross the placental barrier, permanently rescues the Tabby phenotype in the offspring. Notably, sweat glands can also be induced by EDA1 after birth. This is the first example of a developmental genetic defect that can be permanently corrected by short-term treatment with a recombinant protein.
Resumo:
Between the cities of Domodossola and Locarno, the complex ``Centovalli Line'' tectonic zone of the Central Alps outlines deformation phases over a long period of time (probably starting similar to 30 Ma ago) and under variable P-T conditions. The last deformation phases developed gouge-bearing faults with a general E-W trend that crosscuts the roots of the Alpine Canavese zone and the Finero ultramafic body. Kinematic indicators show that the general motion was mainly dextral associated with back thrusting towards the S. The <2 mu m clay fractions of fault gouges from Centovalli Line consist mainly of illite, smectite and chlorite with varied illite-smectite, chlorite-smectite and chlorite-serpentine mixed-layers. Constrained with the illite crystallinity index, the thermal conditions induced by the tectonic activity show a gradual trend from anchizonal to diagenetic conditions. The <2 and <0.2 mu M clay fractions, and hydrothermal K-feldspar separates all provide K-Ar ages between 14.2 +/- 2.9 Ma and roughly 0 Ma, with major episodes at about 12,8, 6 and close to 0 Ma These ages set the recurrent tectonic activity and the associated fluid circulations between Upper Miocene and Recent. On the basis of the K-Ar ages and with a thermal gradient of 25-30 degrees C/km, the studied fault zones were located at a depth of 4-7 km. If they were active until now as observed in field, the exhumation was approximately 2.5-3.0 km for the last 12 Ma with a mean velocity of 0.4 mm/y. Comparison with available models on the recent Alpine evolution shows that the tectonic activity in the area relates to a continuum of the back-thrusting movements of the Canavese Line, and/or to several late-extensional phases of the Rhone-Simplon line. The Centovalli-Val Vigezzo zone therefore represents a major tectonic zone of the Central-Western Alps resulting from different interacting tectonic events. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Numerous measurements by XRD of the Scherrer width at half-peak height (001 reflection of illite), coupled with analyses of clay-size assemblages, provide evidence for strong variations in the conditions of low temperature metamorphism in the Tethyan Himalaya metasediments between the Spiti river and the Tso Morari. Three sectors can be distinguished along the Spiti river-Tso Morari transect. In the SW, the Takling and Parang La area is characterised by a metamorphism around anchizone-epizone boundary conditions. Further north, in the Dutung area, the metamorphic grade abruptly decreases to weak diagenesis, with the presence of mixed-layered clay phases. At the end of the profile towards the NE, a progressive metamorphic increase up to greenschist facies is recorded, marked by the appearance of biotite and chloritoid. The combination of these data with the structural. observations permits to propose that a nappe stack has been crosscut by the younger Dutung-Thaktote extensional fault zone (DTFZ). The change in metamorphism across this zone helps to assess the displacements which occurred during synorogenic extension. In the SW and NE parts of the studied transect, a burial of 12 km has been estimated, assuming a geothermal gradient of 25 degrees C/km. In the SW part, this burial is due to the juxtaposition of the Shikar Beh and Mata nappes and in the NE part, solely to burial beneath the Mata nappe. In the central part of the profile, the effect of the DTFZ is to bring down diagenetic sediments in-between the two aforesaid metamorphic zones. The offset along the Dutung-Thaktote normal faults is estimated at 16 km.
Resumo:
La survie actuelle après correction chirurgicale de la Tétralogie de Fallot (TDF) est de 97% à 12 ans. Les principaux risques à long terme sont une régurgitation pulmonaire ou une sténose récidivante de la sortie droite du coeur, une tachycardie ventriculaire pouvant entrainer une mort subite. Le but de cette étude rétrospective est de comparer la correction chirurgicale de la TDF avec patch pulmonaire versus un conduit valvé xénogreffe. Le collectif se compose de 127 patients entre 2 mois et 16 ans, opérés pour une TDF entre l'année 2000 et 2010. La correction chirurgicale était soit avec un patch, soit avec un conduit valvé à la sortie droite. Cette étude montre d'une part qu'il n'y a pas de différence de survie à un mois entre les deux méthodes opératoires. De plus, elle montre que, lors de la pose d'un patch, il y a plus de sept fois plus d'insuffisances valvulaires modérées à sévères après un mois que lors de la pose d'un conduit valvé. D'autre part, elle démontre que la différence de gradient résiduel à la sortie droite entre la correction avec patch ou conduit n'est pas significative et que la valeur du gradient résiduel à la sortie droite en postopératoire n'est pas représentative du gradient résiduel à un mois. De plus, cette étude prouve que les coronaires aberrantes ainsi qu'un shunt palliatif de Blalock-Taussig sont des facteurs de risque indépendants pour une correction avec un conduit valvé.
Resumo:
The Polochic-Motagua fault systems (PMFS) are part of the sinistral transform boundary between the North American and Caribbean plates. To the west, these systems interact with the subduction zone of the Cocos plate, forming a subduction-subduction-transform triple junction. The North American plate moves westward relative to the Caribbean plate. This movement does not affect the geometry of the subducted Cocos plate, which implies that deformation is accommodated entirely in the two overriding plates. Structural data, fault kinematic analysis, and geomorphic observations provide new elements that help to understand the late Cenozoic evolution of this triple junction. In the Miocene, extension and shortening occurred south and north of the Motagua fault, respectively. This strain regime migrated northward to the Polochic fault after the late Miocene. This shift is interpreted as a ``pull-up'' of North American blocks into the Caribbean realm. To the west, the PMFS interact with a trench-parallel fault zone that links the Tonala fault to the Jalpatagua fault. These faults bound a fore-arc sliver that is shared by the two overriding plates. We propose that the dextral Jalpatagua fault merges with the sinistral PMFS, leaving behind a suturing structure, the Tonala fault. This tectonic ``zipper'' allows the migration of the triple junction. As a result, the fore-arc sliver comes into contact with the North American plate and helps to maintain a linear subduction zone along the trailing edge of the Caribbean plate. All these processes currently make the triple junction increasingly diffuse as it propagates eastward and inland within both overriding plates.
Resumo:
In this paper the problem of intensity inhomogeneity athigh magnetic field on magnetic resonance images isaddressed. Specifically, rat brain images at 9.4Tacquired with a surface coil are bias corrected. Wepropose a low- pass frequency model that takes intoaccount not only background-object contours but alsoother important contours inside the image. Twopre-processing filters are proposed: first, to create avolume of interest without contours, and second, toextrapolate the image values of such masked area to thewhole image. Results are assessed quantitatively andvisually in comparison to standard low pass filterapproach, and they show as expected better accuracy inenhancing image intensity.
Resumo:
We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.
Traitement chirurgical de l'hallux valgus : correction des tissus mous ou ostéotomie sous-capitale ?
Resumo:
[This corrects the article DOI: 10.1371/journal.pone.0114418.].
Resumo:
In this work, we propose a method for prospective motion correction in MRI using a novel image navigator module, which is triggered by a free induction decay (FID) navigator. Only when motion occurs, the image navigator is run and new positional information is obtained through image registration. The image navigator was specifically designed to match the impact on the magnetization and the acoustic noise of the host sequence. This detection-correction scheme was implemented for an MP-RAGE sequence and 5 healthy volunteers were scanned at 3T while performing various head movements. The correction performance was demonstrated through automated brain segmentation and an image quality index whose results are sensitive to motion artifacts.
Resumo:
Connectivity analysis on diffusion MRI data of the whole- brain suffers from distortions caused by the standard echo- planar imaging acquisition strategies. These images show characteristic geometrical deformations and signal destruction that are an important drawback limiting the success of tractography algorithms. Several retrospective correction techniques are readily available. In this work, we use a digital phantom designed for the evaluation of connectivity pipelines. We subject the phantom to a âeurooetheoretically correctâeuro and plausible deformation that resembles the artifact under investigation. We correct data back, with three standard methodologies (namely fieldmap-based, reversed encoding-based, and registration- based). Finally, we rank the methods based on their geometrical accuracy, the dropout compensation, and their impact on the resulting connectivity matrices.
Resumo:
Sport betting is a lucrative business for bookmakers, for the lucky (or wise) punters, but also for governments and for sport. While not new or even recent, the deviances linked to sport betting, primarily match-fixing, have gained increased media exposure in the past decade. This exploratory study is a qualitative content analysis of the press coverage of sport betting-related deviances in football in two countries (UK and France), using in each case two leading national publications over a period of five years. Data analysis indicates a mounting coverage of sport betting scandals, with teams, players and criminals increasingly framed as culprits, while authorities and federations primarily assume a positive role. As for the origin of sport betting deviances, French newspapers tend to blame the system (in an abstract way); British newspapers, in contrast, focus more on individual weaknesses, notably greed. This article contributed to the growing body of literature on the importance of these deviances and on the way they are perceived by sport organizations, legislators and the public at large.