50 resultados para fatigue cracking
Resumo:
Although prolonged or chronic fatigue is a very common complaint in primary care medicine, a biomedical obvious cause is often not found. In such a case, for women between 18 and 50 years with a ferritin level of less than 50 µg/l in the absence of anaemia, an iron supplementation may be associated with an improvement in fatigue. Appropriate treatment is also important for depression, anxiety or insomnia. In other cases, the approach is essentially non-pharmacological in the form of lifestyle advice, empathy and cognitive behavioural therapy as well as progressive and adapted physical exercises. Bien que la fatigue prolongée ou chronique soit une plainte très fréquente en médecine de premier recours, une cause biomédicale évidente n'est souvent pas retrouvée. Dans une telle situation, pour les femmes entre 18 et 50 ans avec un taux de ferritine inférieur à 50 µg/l en l'absence d'anémie, un traitement de fer peut être associé à une amélioration de la fatigue. Un traitement adapté est également important en cas de dépression, d'anxiété ou d'insomnie. Dans les autres situations, la prise en charge est essentiellement non pharmacologique sous forme de conseils d'hygiène de vie, d'empathie, de thérapie cognitivo-comportementale ainsi que d'exercices physiques progressifs et adaptés.
Resumo:
Bien que la fatigue prolongée ou chronique soit une plainte très fréquente en médecine de premier recours, une cause biomédicale évidente n'est souvent pas retrouvée. Dans une telle situation, pour les femmes entre 18 et 50 ans avec un taux de ferritine inférieur à 50 µg/l en l'absence d'anémie, un traitement de fer peut être associé à une amélioration de la fatigue. Un traitement adapté est également important en cas de dépression, d'anxiété ou d'insomnie. Dans les autres situations, la prise en charge est essentiellement non pharmacologique sous forme de conseils d'hygiène de vie, d'empathie, de thérapie cognitivo-comportementale ainsi que d'exercices physiques progressifs et adaptés. Although prolonged or chronic fatigue is a very common complaint in primary care medicine, a biomedical obvious cause is often not found. In such a case, for women between 18 and 50 years with a ferritin level of less than 50 µg/l in the absence of anaemia, an iron supplementation may be associated with an improvement in fatigue. Appropriate treatment is also important for depression, anxiety or insomnia. In other cases, the approach is essentially non-pharmacological in the form of lifestyle advice, empathy and cognitive behavioural therapy as well as progressive and adapted physical exercises.
Resumo:
Among the tools proposed to assess the athlete's "fatigue," the analysis of heart rate variability (HRV) provides an indirect evaluation of the settings of autonomic control of heart activity. HRV analysis is performed through assessment of time-domain indices, the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (RMSSD) measured during short (5 min) recordings in supine position upon awakening in the morning and particularly the logarithm of RMSSD (LnRMSSD) has been proposed as the most useful resting HRV indicator. However, if RMSSD can help the practitioner to identify a global "fatigue" level, it does not allow discriminating different types of fatigue. Recent results using spectral HRV analysis highlighted firstly that HRV profiles assessed in supine and standing positions are independent and complementary; and secondly that using these postural profiles allows the clustering of distinct sub-categories of "fatigue." Since, cardiovascular control settings are different in standing and lying posture, using the HRV figures of both postures to cluster fatigue state embeds information on the dynamics of control responses. Such, HRV spectral analysis appears more sensitive and enlightening than time-domain HRV indices. The wealthier information provided by this spectral analysis should improve the monitoring of the adaptive training-recovery process in athletes.
Resumo:
Among the tools proposed to assess the athlete's "fatigue," the analysis of heart rate variability (HRV) provides an indirect evaluation of the settings of autonomic control of heart activity. HRV analysis is performed through assessment of time-domain indices, the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (RMSSD) measured during short (5 min) recordings in supine position upon awakening in the morning and particularly the logarithm of RMSSD (LnRMSSD) has been proposed as the most useful resting HRV indicator. However, if RMSSD can help the practitioner to identify a global "fatigue" level, it does not allow discriminating different types of fatigue. Recent results using spectral HRV analysis highlighted firstly that HRV profiles assessed in supine and standing positions are independent and complementary; and secondly that using these postural profiles allows the clustering of distinct sub-categories of "fatigue." Since, cardiovascular control settings are different in standing and lying posture, using the HRV figures of both postures to cluster fatigue state embeds information on the dynamics of control responses. Such, HRV spectral analysis appears more sensitive and enlightening than time-domain HRV indices. The wealthier information provided by this spectral analysis should improve the monitoring of the adaptive training-recovery process in athletes.
Resumo:
This study investigated changes in heart rate variability (HRV) in elite Nordic-skiers to characterize different types of "fatigue" in 27 men and 30 women surveyed from 2004 to 2008. R-R intervals were recorded at rest during 8 min supine (SU) followed by 7 min standing (ST). HRV parameters analysed were powers of low (LF), high (HF) frequencies, (LF+HF) (ms(2)) and heart rate (HR, bpm). In the 1 063 HRV tests performed, 172 corresponded to a "fatigue" state and the first were considered for analysis. 4 types of "fatigue" (F) were identified: 1. F(HF(-)LF(-))SU_ST for 42 tests: decrease in LFSU (- 46%), HFSU (- 70%), LFST (- 43%), HFST (- 53%) and increase in HRSU (+ 15%), HRST (+ 14%). 2. F(LF(+) SULF(-) ST) for 8 tests: increase in LFSU (+ 190%) decrease in LFST (- 84%) and increase in HRST (+ 21%). 3. F(HF(-) SUHF(+) ST) for 6 tests: decrease in HFSU (- 72%) and increase in HFST (+ 501%). 4. F(HF(+) SU) for only 1 test with an increase in HFSU (+ 2161%) and decrease in HRSU (- 15%). Supine and standing HRV patterns were independently modified by "fatigue". 4 "fatigue"-shifted HRV patterns were statistically sorted according to differently paired changes in the 2 postures. This characterization might be useful for further understanding autonomic rearrangements in different "fatigue" conditions.