38 resultados para enzymatic cleavage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated the variations of the maximal activities of the rate-controlling glycolytic enzymes (i.e., hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK) and of the pyruvate-dehydrogenase complex (PDHc) during the early embryogenesis of Xenopus laevis (from cleavage through hatching). All the enzymatic assays, using different coupled reactions, were performed spectrophotometrically on cytosolic and mitochondrial fractions. The maximal HK activity increases markedly from neurulation onwards, PFK activity presents a peak around gastrulation, PK activity remains relatively constant throughout the period studied and the highest PDHc activity is observed during cleavage. The specific activities display the same temporal pattern. Furthermore, in the sequence of reactions by which glucose is degraded to form acetyl-CoA, the maximal activities of PFK and PK are not limiting while those of HK and PDHc could be rate-limiting at relatively late developmental stages (hatching).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter argues that the electoral competition between the New Left and the Radical Right is best understood as a cultural divide anchored in different class constituencies. Based on individual-level data from the European Social Survey, we analyze the links between voters' class position, their economic and cultural preferences and their party choice for four small and affluent European countries. We find a striking similarity in the class pattern across countries. Everywhere, the New Left attracts disproportionate support from socio-cultural professionals and presents a clear-cut middle-class profile, whereas the Radical Right is most successful among production and service workers and receives least support from professionals. In general, the Radical Right depends on the votes of lowereducated men and older citizens and has turned into a new type of working-class party. However, its success within the working-class is not due to economic, but to cultural issues. The voters of the Radical Right collide with those of the New Left over a cultural conflict of identity and community - and not over questions of redistribution. A full-grown cleavage has thus emerged in the four countries under study, separating a libertarian-universalistic pole from an authoritarian-communitarian pole and going along with a process of class realignment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résume Les caspases sont un groupe de protéases à cystéine qui s?activent lors de l'apoptose. Leur activation induit le clivage de nombreuses cibles intracellulaires, conduisant à l'activation de voies pro-apoptotiques et finalement au démantèlement des cellules. Cependant, des caspases ont été décrites dans de nombreux autres processus indépendants de l'apoptose, notamment dans la physiologie des cellules hématopoïétiques, des cellules musculaires, des cellules de la peau et des neurones. Comment est-ce que les cellules réconcilient-elles ces deux fonctions distinctes? Une partie de la réponse réside dans la nature des substrats qu'elles clivent. Certains substrats, une fois clivées, deviennent anti-apoptotiques. RasGAP est une cible des caspases et contient deux sites spécifiques de clivage par les caspases. Lorsque le niveau d?activité des caspases est faible le clivage de RasGAP produit un fragment N-terminal qui active un signal antiapoptotique, relayé par la voie de Ras/PI3K/Akt. Lorsque le niveau d?activité des caspases est plus élevé le fragment RasGAP N-terminal est à nouveau clivé, perdant de ce fait ses propriétés anti-apoptotiques. Dans cette étude, nous avons mis en évidence que l'activation de la voie Ras/PI3K/Akt induite par le fragment RasGAP N-terminal dépend de RasGAP lui-même. Par ailleurs, dans le but d?étudier l?importance du clivage de RasGAP dans un contexte physiologique, nous avons développé un modèle animal exprimant une gêne mutée de RasGAP de sorte que la protéine est devenu insensible a l?action de caspases. Les données préliminaires obtenues montrent que le clivage de RasGAP n'est pas indispensable pour le développement et l?homéostasie chez la souris. Finalement, nous avons développé une souris transgénique surexprimant le fragment de RasGAP N-terminal dans les cellules ß du pancréas. Les animaux obtenus ne montrent pas de symptômes dans les conditions basales bien qu?ils soient plus résistants au diabète induit expérimentalement. Ces résultats montrent que la surexpression du fragment N-terminal de RasGAP protége efficacement les cellules ß du pancréas de l?apoptose induite par le stress sans pourtant affecter d?autres paramètres physiologiques des Ilot de Langerhans.<br/><br/>Caspases are a series of proteases that are activated during apoptosis. Their activation causes the cleavage of numerous intracellular targets, which leads to cell dismantling and activation of pro-apoptotic pathways. Caspases have been found to be involved in the physiology of numerous cell types including haematopoietic cells, muscle cells, skin cells and neurons. How cells conciliate these two opposite functions? Part of the answer lies in the nature of the substrates they cleave. Some substrates become anti-apoptotic once cleaved by caspases. RasGAP is a caspase substrate that possesses two conserved caspase-cleavage sites. At low caspase activity, RasGAP is first cleaved and the generated N-terminal fragment activates a potent anti-apoptotic signal, mediated by the Ras/PI3K/Akt pathway. At higher caspase activity, the N-terminal fragment is further cleaved thereby losing its anti-apoptotic properties. In the present study we show that the activation of the Ras/PI3K/Akt pathway mediated by RasGAP N-terminal fragment is dependent on RasGAP itself. Moreover, to study the role of RasGAP cleavage in a physiological model, we have developed a knock-in mouse model expressing a RasGAP mutant that is not cleavable by caspases. Preliminary data shows that RasGAP cleavage is not required for normal development and homeostasis in mice. Finally, we have developed a transgenic mouse model overexpressing RasGAP N-terminal fragment in the ß-cell of the pancreas. In basal conditions, these mice show no difference with their wt counterparts. However, they are protected against experimentally induced diabetes. These results indicate that fragment N can protect ? cells from stress-induced apoptosis without affecting other physiological parameters of the Islets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of the mutualistic arbuscular mycorrhiza (AM) symbiosis between most land plants and fungi of the Glomeromycota is regulated by phytohormones. The role of jasmonate (JA) in AM colonization has been investigated in the dicotyledons Medicago truncatula, tomato and Nicotiana attenuata and contradicting results have been obtained with respect to a neutral, promotive or inhibitory effect of JA on AM colonization. Furthermore, it is currently unknown whether JA plays a role in AM colonization of monocotyledonous roots. Therefore we examined whether JA biosynthesis is required for AM colonization of the monocot rice. To this end we employed the rice mutant constitutive photomorphogenesis 2 (cpm2), which is deficient in JA biosynthesis. Through a time course experiment the amount and morphology of fungal colonization did not differ between wild-type and cpm2 roots. Furthermore, no significant difference in the expression of AM marker genes was detected between wild type and cpm2. However, treatment of wild-type roots with 50 μM JA lead to a decrease of AM colonization and this was correlated with induction of the defense gene PR4. These results indicate that JA is not required for AM colonization of rice but high levels of JA in the roots suppress AM development likely through the induction of defense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The hepatitis C virus (HCV) NS3-4A protease is essential for the HCV life cycle and a prime target of antiviral treatment strategies. Protease inhibitors, however, are limited by emergence of resistance-associated amino acid variants (RAVs). The capacity to cleave and inactivate mitochondrial antiviral-signaling protein (MAVS) in the RIG-I-signaling pathway is a cardinal feature of NS3-4A, by which HCV blocks induction of interferon-(IFN)-β, thereby promoting viral persistence. Here, we aimed to investigate the impact of NS3-4A RAVs on MAVS cleavage. METHODS: The impact of NS3-4A RAVs on MAVS cleavage was assessed using immunoblot analyses, luciferase reporter assays and molecular dynamics simulations to study the underlying molecular principles. IFN-β was quantified in serum from patients with different NS3-4A RAVs. RESULTS: We show that macrocyclic NS3-4A RAVS with substitutions at residue D168 of the protease result in an increased capacity of NS3-4A to cleave MAVS and suppress IFN-β induction compared with a comprehensive panel of RAVs and wild type HCV. Mechanistically, we show the reconstitution of a tight network of electrostatic interactions between protease and the peptide substrate that allows much stronger binding of MAVS to D168 RAVs than to the wild-type protease. Accordingly, we could show IFN-β serum levels to be lower in patients with treatment failure due to the selection of D168 variants compared to R155 RAVs. CONCLUSIONS: Our data constitutes a proof of concept that the selection of RAVs against specific classes of direct antivirals can lead to the predominance of viral variants with possibly adverse pathogenic characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-translational protein modifications are crucial for many fundamental cellular and extracellular processes and greatly contribute to the complexity of organisms. Human HCF-1 is a transcriptional co-regulator that undergoes complex protein maturation involving reversible and irreversible post-translational modifications. Upon synthesis as a large precursor protein, HCF-1 undergoes extensive reversible glycosylation with β-N-acetylglucosamine giving rise to O-linked-β-N-acetylglucosamine (O-GlcNAc) modified serines and threonines. HCF-1 also undergoes irreversible site-specific proteolysis, which is important for one of HCF-1's major functions - the regulation of the cell-division cycle. HCF-1 O-GlcNAcylation and site-specific proteolysis are both catalyzed by a single enzyme with an unusual dual enzymatic activity, the O-GlcNAc transferase (OGT). HCF-1 is cleaved by OGT at any of six highly conserved 26 amino acid repeated sequences (HCF-1PRO repeats), but the mechanisms and the substrate requirements for OGT-mediated cleavage are not understood. In the present work, I characterized substrate requirements for OGT-mediated cleavage and O-GlcNAcylation of HCF-1. I identified key elements within the HCF-1PRO-repeat sequence that are important for proteolysis. Remarkably, an invariant single amino acid side-chain within the HCF-1PRO-repeat sequence displays particular OGT-binding properties and is essential for proteolysis. Additionally, I characterized substrate requirements for proteolysis outside of the HCF-1PRO repeat and identified a novel, highly O-GlcNAcylated OGT-binding sequence that enhances cleavage of the first HCF-1PRO repeat. These results link OGT association and its O-GlcNAcylation activities to HCF-1PRO-repeat proteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved protein complex regulating key pathways in cell growth. Hyperactivation of mTORC1 is implicated in numerous cancers, thus making it a potential broad-spectrum chemotherapeutic target. Here, we characterized how mTORC1 responds to cell death induced by various anticancer drugs such rapamycin, etoposide, cisplatin, curcumin, staurosporine and Fas ligand. All treatments induced cleavage in the mTORC1 component, raptor, resulting in decreased raptor-mTOR interaction and subsequent inhibition of the mTORC1-mediated phosphorylation of downstream substrates (S6K and 4E-BP1). The cleavage was primarily mediated by caspase-6 and occurred at two sites. Mutagenesis at one of these sites, conferred resistance to cell death, indicating that raptor cleavage is important in chemotherapeutic apoptosis.