152 resultados para electric cellular regulation
Resumo:
Background To replicate, retroviruses must insert DNA copies of their RNA genomes into the host genome. This integration process is catalyzed by the viral integrase protein. The site of viral integration has been shown to be non-random and retrovirus-specific. LEDGF/p75, a splice variant encoded by PSIP1 gene and described as a general transcription coactivator, was identified as a tethering factor binding both to chromatin and to lentiviral integrases, thereby affecting integration efficiency as well as integration site selection. LEDGF/p75 is still a poorly characterized protein, and its cellular endogenous function has yet to be fully determined. In order to start unveiling the roles of LEDGF/p75 in the cell, we started to investigate the mechanisms involved in the regulation of LEDGF/p75. Materials and methods To identify PSIP1 minimal promoter and associated regulatory elements, we cloned a region starting 5 kb upstream the transcription start site (TSS, +1 reference position) to the ATG start codon (+816), as well as systematic truncations, in a plasmid containing the firefly luciferase reporter gene. These constructs were co-transfected into HEK293 cells with a plasmid encoding the Renilla luciferase under the pTK promoter as an internal control for transfection efficiency. Both luciferase activities were assessed by luminescence as an indicator of promoter activity. Results Luciferase assays identified regions -76 to +1 and +1 to +94 as two independent minimal promoters showing respectively a 3.7x and 2.3x increase in luciferase activity. These two independent minimal promoters worked synergistically increasing luciferase activity up to 16.3x as compared to background. Moreover, we identified five regulatory blocks which modulated luciferase activity depending on the DNA region tested, three enhancers (- 2007 to -1159, -284 to -171 and +94 to +644) and two silencers (-171 to -76 and +796 to +816). However, the silencing effect of the region -171 to -76 is dependent on the presence of the +94 to +644 region, ruling out the enhancer activity of the latter. Computational analysis of PSIP1 promoter revealed the absence of TATA box and initiator (INR) sequences, classifying this promoter as nonconventional. TATA-less and INR-less promoters are characterized by multiple Sp1 binding sites, involved in the recruitment of the RNA pol II complex. Consistent with this, PSIP1 promoter contains multiple putative Sp1 binding sequences in regions -76 to +1 and +1 to +94.
Resumo:
Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.
Resumo:
Craniopharyngiomas (CP) are benign epithelial tumors of the sellar region and can be clinicopathologically distinguished into adamantinomatous (adaCP) and papillary (papCP) variants. Both subtypes are classified according to the World Health Organization grade I, but their irregular digitate brain infiltration makes any complete surgical resection difficult to obtain. Herein, we characterized the cellular interface between the tumor and the surrounding brain tissue in 48 CP (41 adaCP and seven papCP) compared to non-neuroepithelial tumors, i.e., 12 cavernous hemangiomas, 10 meningiomas, and 14 metastases using antibodies directed against glial fibrillary acid protein (GFAP), vimentin, nestin, microtubule-associated protein 2 (MAP2) splice variants, and tenascin-C. We identified a specific cell population characterized by the coexpression of nestin, MAP2, and GFAP within the invasion niche of the adamantinomatous subtype. This was especially prominent along the finger-like protrusions. A similar population of presumably astroglial precursors was not visible in other lesions under study, which characterize them as distinct histopathological feature of adaCP. Furthermore, the outer tumor cell layer of adaCP showed a distinct expression of MAP2, a novel finding helpful in the differential diagnosis of epithelial tumors in the sellar region. Our data support the hypothesis that adaCP, unlike other non-neuroepithelial tumors of the central nervous system, create a tumor-specific cellular environment at the tumor-brain junction. Whether this facilitates the characteristic infiltrative growth pattern or is the consequence of an activated Wnt signaling pathway, detectable in 90% of these tumors, will need further consideration.
Resumo:
The classical T cell cytokine macrophage migration inhibitory factor (MIF) has reemerged recently as a critical mediator of the host immune and stress response. MIF has been found to be a mediator of several diseases including gram-negative septic shock and delayed-type hypersensitivity reactions. Its immunological functions include the modulation of the host macrophage and T and B cell response. In contrast to other known cytokines, MIF production is induced rather than suppressed by glucocorticoids, and MIF has been found to override the immunosuppressive effects of glucocorticoids. Recently, elucidation of the three-dimensional structure of MIF revealed that MIF has a novel, unique cytokine structure. Here the biological role of MIF is reviewed in view of its distinct immunological and structural properties.
Resumo:
Le protozoaire unicellulaire Leishmania est l'agent responsable de la leishmaniose, une maladie parasitaire humaine qui se manifeste par des lésions de la peau, se résolvant le plus souvent spontanément, jusqu'à des lésions viscérales fatales. Le parasite est transmis de l'insecte à l'hôte mammifère lors d'un repas sanguin de la mouche des sables et y réside respectivement sous formes extra- et intracellulaires. On estime que cette maladie touche environ 12 millions de personnes dans 98 pays. Etant donné que les médicaments disponibles à ce jour sont faiblement efficaces et/ou hautement toxiques, il est indispensable de consolider les connaissances sur le fonctionnement et la survie du parasite pour pouvoir développer de nouvelles stratégies de traitements et de préventions. Tous les organismes vivants, dont Leishmania, contiennent du polyphopshate (polyP). Cette molécule chargée négativement est constituée de trois jusqu'à plusieurs centaines de résidus de phosphates reliées par des liaisons à haute énergie. Le polyP sert donc de source d'énergie et de réservoir de phosphate; dans certaines espèces, il joue aussi un rôle dans l'adaptation au stress et la virulence de pathogènes. Ceci nous a amené à étudier le rôle du polyP dans le parasite Leishmania. L'enzyme responsable de la synthèse de polyP a été identifié récemment dans la levure : il s'agit de la chaperone de transport vacuolaire 4 (Vtc4). Nous avons identifié un homologue de Vtc4 chez les Trypanosomatidae, et avons donc décidé d'examiner sa fonction dans le métabolisme du polyP chez Leishmania. En éliminant l'expression de Vtc4 chez L. major et L. guyanensis, nous avons pu démontrer qu'il est indispensable pour la production de polyP chez Leishmania. De plus, nous avons constaté que ces parasites possèdent des chaînes de polyP allant de trois jusqu'à environ 300 résidus de phosphate. Le taux de polyP dans la cellule est précisément régulé et varie entre un très haut niveau durant la phase proliférative des promastigotes à un niveau bas en phase stationnaire tardive, alors que l'expression de Vtc4p reste stable. Dans les amastigotes intracellulaires, seulement des petites quantités de polyP et de Vtc4p sont détectées. En outre, l'absence de Vc4p et de polyP n'a pas d'effet significatif sur les infections in vivo de souris, ce qui indique que le polyP n'est pas nécessaire au développement de la leishmaniose. Ceci suggère que Vtc4p n 'est pas une bonne cible pour le développement de nouveaux traitements contre Leishmania. "Néanmoins, la présence du polyP favorise fortement la survie du parasite suite à un choc de température (37°C) et aide ainsi à sa persistance intracellulaire pendant les premiers jours d'infection de macrophages. En résumé, nos résultats indiquent que si le polyP a peu d'importance pendant l'infection et le développement de la leishmaniose chez la souris, il est par contre crucial pour l'adaptation à des situations de stress comme l'augmentation de la température. Le fait que le polyP a été conservé dans tous les organismes durant l'évolution suggère toutefois que cette molécule joue un rôle fondamental. Etant donné que l'absence de polyP n'a pas d'effet sur la survie des amastigotes, il pourrait être plus important dans la forme promastigote infectant la mouche des sables. - The unicellular protozoan parasite Leishmania is the causative agent of the human disease leishmaniasis, which can range from self-healing skin lesions to fatal visceral lesions. The parasite is transmitted from the insect vector to the mammalian host when the sand fly takes its blood meal and exists in an extra- and an intracellular form, respectively. The disease is estimated to affect 12 million people in 98 countries and currently available drug treatments are of relatively low potency and/or high toxicity. Thus, investigating parasite survival mechanisms and parasite adaptation to the two host environments contributes to the general understanding of Leishmania propagation and might therefore help to develop future treatments or preventions. All living cells, including Leishmania, contain a negatively charged polymer of a few up to several hundred phosphate residues. These so-called polyphosphates (polyPs) serve as an energy source and phosphate reservoir. In some organisms, polyP is also involved in adaptation to stresses and virulence of pathogens. Therefore we were interested in investigating the importance of polyP in Leishmania parasites. Recently, an eukaryotic enzyme responsible for polyP synthesis has been identified as the vacuolar transporter chaperone 4 (Vtc4) in yeast. We, and others, found a Vtc4 homologue in trypanosomatids and decided to examine its potential function in polyP metabolism. By generating VTC4 knock-out cell lines in L. major and Vtc4 knock-down cell lines in L. guyanensis, we were able to demonstrate that Vtc4p is responsible for the total amount of cellular polyP. We also observed that Leishmania polyP chain length ranges from a few up to around 300 residues and that its level is tightly regulated. PolyP abundance is highest during the logarithmic proliferating phase of promastigotes and decreases in the stationary phase, while Vtc4 protein expression remains stable during both phases. In the intracellular amastigote form, only low amounts of polyP and Vtc4p were detectable. Furthermore, absence of Vtc4p and polyP did not have a significant effect on in vivo mouse infections, indicating that polyP is not necessary for Leishmania disease progression. This suggests that Vtc4p would be a poor drug target against Leishmania infection. However, presence of the polymer strongly supported parasite survival during heat shock (37°C) and thereby promoted intracellular persistence during the first days of macrophage infections. Taken together, we found that polyP has little importance in Leishmania {in vivo) infection but that it plays a crucial role during adaptation to stress, such as heat shock. Given that polyP has been preciously conserved in all organisms during evolution it seems to play a fundamental role. Since absence of polyP does not affect amastigote survival, it might be significant for promastigote existence in the sand fly vector.
Resumo:
BACKGROUND: Human immunodeficiency virus (HIV) takes advantage of multiple host proteins to support its own replication. The gene ZNRD1 (zinc ribbon domain-containing 1) has been identified as encoding a potential host factor that influenced disease progression in HIV-positive individuals in a genomewide association study and also significantly affected HIV replication in a large-scale in vitro short interfering RNA (siRNA) screen. Genes and polymorphisms identified by large-scale analysis need to be followed up by means of functional assays and resequencing efforts to more precisely map causal genes. METHODS: Genotyping and ZNRD1 gene resequencing for 208 HIV-positive subjects (119 who experienced long-term nonprogression [LTNP] and 89 who experienced normal disease progression) was done by either TaqMan genotyping assays or direct sequencing. Genetic association analysis was performed with the SNPassoc package and Haploview software. siRNA and short hairpin RNA (shRNA) specifically targeting ZNRD1 were used to transiently or stably down-regulate ZNRD1 expression in both lymphoid and nonlymphoid cells. Cells were infected with X4 and R5 HIV strains, and efficiency of infection was assessed by reporter gene assay or p24 assay. RESULTS: Genetic association analysis found a strong statistically significant correlation with the LTNP phenotype (single-nucleotide polymorphism rs1048412; [Formula: see text]), independently of HLA-A10 influence. siRNA-based functional analysis showed that ZNRD1 down-regulation by siRNA or shRNA impaired HIV-1 replication at the transcription level in both lymphoid and nonlymphoid cells. CONCLUSION: Genetic association analysis unequivocally identified ZNRD1 as an independent marker of LTNP to AIDS. Moreover, in vitro experiments pointed to viral transcription as the inhibited step. Thus, our data strongly suggest that ZNRD1 is a host cellular factor that influences HIV-1 replication and disease progression in HIV-positive individuals.
Resumo:
FXYD3 (Mat-8) proteins are regulators of Na,K-ATPase. In normal tissue, FXYD3 is mainly expressed in stomach and colon, but it is also overexpressed in cancer cells, suggesting a role in tumorogenesis. We show that FXYD3 silencing has no effect on cell proliferation but promotes cell apoptosis and prevents cell differentiation of human colon adenocarcinoma cells (Caco-2), which is reflected by a reduction in alkaline phosphatase and villin expression, a change in several other differentiation markers, and a decrease in transepithelial resistance. Inhibition of cell differentiation in FXYD3-deficient cells is accompanied by an increase in the apparent Na+ and K+ affinities of Na,K-ATPase, reflecting the absence of Na,K-pump regulation by FXYD3. In addition, we observe a decrease in the maximal Na,K-ATPase activity due to a decrease in its turnover number, which correlates with a change in Na,K-ATPase isozyme expression that is characteristic of cancer cells. Overall, our results suggest an important role of FXYD3 in cell differentiation of Caco-2 cells. One possibility is that FXYD3 silencing prevents proper regulation of Na,K-ATPase, which leads to perturbation of cellular Na+ and K+ homeostasis and changes in the expression of Na,K-ATPase isozymes, whose functional properties are incompatible with Caco-2 cell differentiation.
Resumo:
During the last decade, extensive research has been performed in the field of orthopedic medicine to develop cell-based therapies for the restoration of injured bone tissue. We previously demonstrated that human primary fetal bone cells (HFBCs) associated with porous scaffolds induced a bone formation in critical calvaria defect; however, the environmental factors regulating their behavior in culture have not been identified. HFBCs (human fetal femur,12 week development) were compared to marrow-derived human mesenchymal stem cells (HMSCs) for their capacity to proliferate and differentiate into osteoblasts under various culture conditions. When cultured in standard alphaMEM medium, PDGF and FGF-2 increased cell proliferation of both cell types. Investigation of the differentiating capacity of HFBCs and HMSCs in a normal culture medium indicated that HFBCs expressed higher expression levels of RUNX2, OSX, and osteogenic markers compared with HMSCs, while SOX9 was expressed at very low levels in both cells types. However, HMSCs, but not HFBCs enhanced osteoblastic markers in response to osteogenic factors. Surprisingly, BMP-2 with osteogenic factors increased cell numbers and reduced osteoblastic differentiation in HFBCs with the opposite effect seen in HMSCs. Associated with a higher expression of osteoblastic markers, HFBCs produced a higher calcified extra cellular matrix compared with HMSCs. Taken together, data presented in this study suggest that HFBCs have characteristics of osteoprecursor cells that are more advanced in their osteogenesis development compared with mesenchymal stem cells, making fetal cells an interesting biological tool for treatment of skeletal defects and diseases.
Resumo:
Non-infarcted myocardium after coronary occlusion undergoes progressive morphological and functional changes. The purpose of this study was to determine whether non-infarcted myocardium exhibits (1) alteration of the substrate pattern of myocardial metabolism and (2) concomitant changes in the expression of regulatory proteins of glucose and fatty acid metabolism. Myocardial infarction was induced in rats by ligation of the left coronary artery. One day and eight weeks after coronary occlusion, glucose and palmitate oxidation were measured. Expression of selected proteins of metabolism were determined one day to 12 weeks after infarction. One day after coronary occlusion no difference of glucose and palmitate oxidation was detectable, whereas after eight weeks, glucose oxidation was increased (+84%, P<0.05) and palmitate oxidation did not change significantly (-19%, P=0.07) in infarct-containing hearts, compared with hearts from sham-operated rats. One day after coronary occlusion, myocardial mRNA expression of the glucose transporter GLUT-1 was increased (+86%, P<0.05) and the expression of GLUT-4 was decreased (-28%, P<0.05) in surviving myocardium of infarct-containing hearts. Protein level of GLUT-1 was increased (+81%, P<0.05) and that of GLUT-4 slightly, but not significantly, decreased (-16%, P=NS). mRNA expressions of heart fatty acid binding protein (H-FABP), and of medium chain acyl-CoA dehydrogenase (MCAD), were decreased by 36% (P<0.05) and 35% (P=0. 07), respectively. Eight weeks after acute infarction, the left ventricle was hypertrophied and, at this time-point, there was no difference in the expression of GLUT-1 and GLUT-4 between infarcted and sham-operated hearts. However, myocardial mRNA and protein content of MCAD were decreased by 30% (P<0.01) and 27% (P<0.05), respectively. In summary, in surviving myocardium, glucose oxidation was increased eight weeks after coronary occlusion. Concomitantly, mRNA and protein expression of MCAD were decreased, compatible with a role of altered expression of regulatory proteins of metabolism in post-infarction modification of myocardial metabolism.
Resumo:
Pre- and postnatal corticosteroids are often used in perinatal medicine to improve pulmonary function in preterm infants. To mimic this clinical situation, newborn rats were treated systemically with dexamethasone (Dex), 0.1-0.01 mg/kg/day on days P1-P4. We hypothesized that postnatal Dex may have an impact on alveolarization by interfering with extracellular matrix proteins and cellular differentiation. Morphological alterations were observed on 3D images obtained by high-resolution synchrotron radiation X-ray tomographic microscopy. Alveolarization was quantified stereologically by estimating the formation of new septa between days P4 and P60. The parenchymal expression of tenascin-C (TNC), smooth muscle actin (SMA), and elastin was measured by immunofluorescence and gene expression for TNC by qRT-PCR. After Dex treatment, the first phase of alveolarization was significantly delayed between days P6 and P10, whereas the second phase was accelerated. Elastin and SMA expressions were delayed by Dex treatment, whereas TNC expression was delayed and prolonged. A short course of neonatal steroids impairs the first phase of alveolarization, most likely by altering the TNC and elastin expression. Due to an overshooting catch-up during the second phase of alveolarization, the differences disappear when the animals reach adulthood.
Resumo:
The timely regulation of gonadotropin-releasing hormone (GnRH) secretion requires a GABAergic signal. We hypothesized that GEC1, a protein promoting the transport of GABA(A) receptors, could represent a circadian effector in GnRH neurons. First, we demonstrated that gec1 is co-expressed with the GABA(A) receptor in hypothalamic rat GnRH neurons. We also confirmed that the clock genes per1, cry1 and bmal1 are expressed and oscillate in GnRH secreting GnV-3 cells. Then we could show that gec1 is expressed in GnV-3 cells, and oscillates in a manner temporally related to the oscillations of the clock transcription factors. Furthermore, we could demonstrate that these oscillations depend upon Per1 expression. Finally, we observed that GABA(A) receptor levels at the GnV-3 cell membrane are timely modulated following serum shock. Together, these data demonstrate that gec1 expression is dependent upon the circadian clock machinery in GnRH-expressing neurons, and suggest for the first time that the level of GABA(A) receptor at the cell membrane may be under timely regulation. Overall, they provide a potential mechanism for the circadian regulation of GnRH secretion by GABA, and may also be relevant to the general understanding of circadian rhythms.
Resumo:
NF1 is a family of polypeptides that binds to discrete DNA motifs and plays varying roles in the regulation of gene expression. These polypeptides are also thought to mediate the expression of differentiation-specific markers such as adipocyte and mammary cell type-specific genes. The expression of a number of cellular differentiation-specific markers is down-regulated during neoplastic transformation. We therefore investigated whether oncogenic transformation interferes with the action of NF1. Stable transfection of activated Ha-ras into a number of murine cells correlated with a down-regulation of the expression of the NF1 genes NF1/CTF and NF1/X. The down-regulation was not at the transcriptional level but at the level of stability of the NF1 mRNAs. The level of the DNA binding activity of the NF1 proteins was also reduced in Ha-v-ras-transformed cells, and the expression of a gene that depends on this family of transcription factors was specifically repressed. These results demonstrate that an activated Ha-ras-induced pathway destabilizes the half-life of mRNAs encoding specific members in the NF1 family of transcription factors, which leads to a decrease in NF1-dependent gene expression.
Resumo:
Peroxynitrite is a potent oxidant and nitrating species formed from the reaction between the free radicals nitric oxide and superoxide. An excessive formation of peroxynitrite represents an important mechanism contributing to cell death and dysfunction in multiple cardiovascular pathologies, such as myocardial infarction, heart failure and atherosclerosis. Whereas initial works focused on direct oxidative biomolecular damage as the main route of peroxynitrite toxicity, more recent evidence, mainly obtained in vitro, indicates that peroxynitrite also behaves as a potent modulator of various cell signal transduction pathways. Due to its ability to nitrate tyrosine residues, peroxynitrite affects cellular processes dependent on tyrosine phosphorylation. Peroxynitrite also exerts complex effects on the activity of various kinases and phosphatases, resulting in the up- or downregulation of signalling cascades, in a concentration- and cell-dependent manner. Such roles of peroxynitrite in the redox regulation of key signalling pathways for cardiovascular homeostasis, including protein kinase B and C, the MAP kinases, Nuclear Factor Kappa B, as well as signalling dependent on insulin and the sympatho-adrenergic system are presented in detail in this review.
Resumo:
Abstract: The AU-rich elements (AREs) consisting of repeated AUUUA motifs confer rapid degradation to many cellular mRNAs when present in the 3' untranslated region (3'UTR). We have studied the instability of interleukin-6 mRNA by grafting its 3' untranslated region to a stable green fluorescent protein mRNA. Subsequent scanning mutagenesis identified two conserved elements, which taken together account for most of the instability. The first corresponds to a short non-canonical AU-rich element. The other comprises a sequence predicted to form astern-loop structure. Both elements need to be present in order to confer full instability (Paschoud et al. 2006). Destabilization of ARE-containing mRNAs is thought to involve ARE-binding proteins such as AUF1. We tested whether AUF1 binding to interleukin-6 mRNA correlates with decreased mRNA stability. Overexpression of myc-tagged p37AUFl and p42AUF1 as well as suppression of all four AUF1 isoforms by RNA interference stabilized the interleukin-6 mRNA. Furthermore, the interleukin-6 mRNA co-immunoprecipitated specifically with myc-tagged p37AUF1 and p42AUF1 in cell extracts. Both the stabilization and AUF1-binding required the non-canonical AU-rich sequence. These results indicate that AUF1 binds to the AU-rich element in vivo and promotes interleukin6 mRNA degradation. The combination of mRNA co-immunoprecipitation with microarray technology revealed that at least 500 cellular mRNAs associate with AUF1. Résumé: "La présence d'éléments riches en A et U (ARE), en particulier les motifs répétés d'AUUUA dans la région 3' non traduite, confère une dégradation rapide à beaucoup d'ARN cellulaires. Nous avons étudié l'instabilité de l'ARN codant pour l'interleukine 6 en greffant sa région 3' non traduite à un ARN stable codant pour la protéine fluorescente verte. La mutagenèse systématique des séquences non traduites a permis l'identification de deux éléments conservés qui confèrent l'instabilité à l'ARN. Le premier correspond à un élément AU-riche non canonique court. Le second comporte une structure en 'épingle à cheveux'. Tous les deux éléments doivent être présents afin de conférer une instabilité complète (Paschoud et al. 2006). On pense que des protéines telles que AUF1, pouvant se lier aux éléments ARE, sont impliquées dans la dégradation des ARN messagers. Nous avons examiné si la liaison de AUFl sur l'ARN de l'interleukine 6 corrèle avec une stabilité diminuée. La surexpression des protéines p37AUF1 et de p42AUF1 myc-étiquetées ainsi que la suppression de chacun des quatre isoformes de AUF1 par interférence d'ARN a stabilisé l'ARN messager d'interleukine 6. En outre, cet ARN co-immunoprécipite spécifiquement avec p37AUF1 et p42AUF1 dans des extraits cellulaires. La présence de l'élément AUriche non canonique est nécessaire pour la stabilisation de l'ARN et sa liaison avec AUFI. Ces résultats indiquent qu'AUF1 se lie à l'élément AU-riche in vivo et favorise la dégradation de l'ARN messager d'interleukine 6. La combinaison des techniques de coimmunoprécipitation des ARN messagers et des analyses par `microarray' indique qu'au moins 500 ARN cellulaires s'associent à AUF1.
Resumo:
In mammals, the presence of excitable cells in muscles, heart and nervous system is crucial and allows fast conduction of numerous biological information over long distances through the generation of action potentials (AP). Voltage-gated sodium channels (Navs) are key players in the generation and propagation of AP as they are responsible for the rising phase of the AP. Navs are heteromeric proteins composed of a large pore-forming a-subunit (Nav) and smaller ß-auxiliary subunits. There are ten genes encoding for Navl.l to Nav1.9 and NaX channels, each possessing its own specific biophysical properties. The excitable cells express differential combinations of Navs isoforms, generating a distinct electrophysiological signature. Noteworthy, only when anchored at the membrane are Navs functional and are participating in sodium conductance. In addition to the intrinsic properties of Navs, numerous regulatory proteins influence the sodium current. Some proteins will enhance stabilization of membrane Navs while others will favour internalization. Maintaining equilibrium between the two is of crucial importance for controlling cellular excitability. The E3 ubiquitin ligase Nedd4-2 is a well-characterized enzyme that negatively regulates the turnover of many membrane proteins including Navs. On the other hand, ß-subunits are known since long to stabilize Navs membrane anchoring. Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of Navs expressed in dorsal root ganglion (DRG) sensory neurons as highlighted in different animal models of neuropathic pain. Among Navs, Nav1.7 and Nav1.8 are abundantly and specifically expressed in DRG sensory neurons and have been recurrently incriminated in nociception and neuropathic pain development. Using the spared nerve injury (SNI) experimental model of neuropathic pain in mice, I observed a specific reduction of Nedd4-2 in DRG sensory neurons. This decrease subsequently led to an upregulation of Nav1.7 and Nav1.8 protein and current, in the axon and the DRG neurons, respectively, and was sufficient to generate neuropathic pain-associated hyperexcitability. Knocking out Nedd4-2 specifically in nociceptive neurons led to the same increase of Nav1.7 and Nav1.8 concomitantly with an increased thermal sensitivity in mice. Conversely, rescuing Nedd4-2 downregulation using viral vector transfer attenuated neuropathic pain mechanical hypersensitivity. This study demonstrates the significant role of Nedd4-2 in regulating cellular excitability in vivo and its involvement in neuropathic pain development. The role of ß-subunits in neuropathic pain was already demonstrated in our research group. Because of their stabilization role, the increase of ßl, ß2 and ß3 subunits in DRGs after SNI led to increased Navs anchored at the membrane. Here, I report a novel mechanism of regulation of a-subunits by ß- subunits in vitro; ßl and ß3-subunits modulate the glycosylation pattern of Nav1.7, which might account for stabilization of its membrane expression. This opens new perspectives for investigation Navs state of glycosylation in ß-subunits dependent diseases, such as in neuropathic pain. - Chez les mammifères, la présence de cellules excitables dans les muscles, le coeur et le système nerveux est cruciale; elle permet la conduction rapide de nombreuses informations sur de longues distances grâce à la génération de potentiels d'action (PA). Les canaux sodiques voltage-dépendants (Navs) sont des participants importants dans la génération et la propagation des PA car ils sont responsables de la phase initiale de dépolarisation du PA. Les Navs sont des protéines hétéromériques composées d'une grande sous-unité a (formant le pore du canal) et de petites sous-unités ß accompagnatrices. Il existe dix gènes qui codent pour les canaux sodiques, du Nav 1.1 au Nav 1.9 ainsi que NaX, chacun possédant des propriétés biophysiques spécifiques. Les cellules excitables expriment différentes combinaisons des différents isoformes de Navs, qui engendrent une signature électrophysiologique distincte. Les Navs ne sont fonctionnels et ne participent à la conductibilité du Na+, que s'ils sont ancrés à la membrane plasmique. En plus des propriétés intrinsèques des Navs, de nombreuses protéines régulatrices influencent également le courant sodique. Certaines protéines vont favoriser l'ancrage et la stabilisation des Navs exprimés à la membrane, alors que d'autres vont plutôt favoriser leur internalisation. Maintenir l'équilibre des deux processus est crucial pour contrôler l'excitabilité cellulaire. Dans ce contexte, Nedd4-2, de la famille des E3 ubiquitin ligase, est une enzyme bien caractérisée qui régule l'internalisation de nombreuses protéines, notamment celle des Navs. Inversement, les sous-unités ß sont connues depuis longtemps pour stabiliser l'ancrage des Navs à la membrane. La douleur neuropathique périphérique est une condition débilitante résultant d'une atteinte à un nerf. Elle est caractérisée par la dérégulation des Navs exprimés dans les neurones sensoriels du ganglion spinal (DRG). Ceci a été démontré à de multiples occasions dans divers modèles animaux de douleur neuropathique. Parmi les Navs, Nav1.7 et Nav1.8 sont abondamment et spécifiquement exprimés dans les neurones sensoriels des DRG et ont été impliqués de façon récurrente dans le développement de la douleur neuropathique. En utilisant le modèle animal de douleur neuropathique d'épargne du nerf sural (spared nerve injury, SNI) chez la souris, j'ai observé une réduction spécifique des Nedd4-2 dans les neurones sensoriels du DRG. Cette diminution avait pour conséquence l'augmentation de l'expression des protéines et des courants de Nav 1.7 et Nav 1.8, respectivement dans l'axone et les neurones du DRG, et était donc suffisante pour créer l'hyperexcitabilité associée à la douleur neuropathique. L'invalidation pour le gène codant pour Nedd4-2 dans une lignée de souris génétiquement modifiées a conduit à de similaires augmentations de Nav1.7 et Nav1.8, parallèlement à une augmentation à la sensibilité thermique. A l'opposé, rétablir une expression normale de Nedd4-2 en utilisant un vecteur viral a eu pour effet de contrecarrer le développement de l'hypersensibilité mécanique lié à ce modèle de douleur neuropathique. Cette étude démontre le rôle important de Nedd4-2 dans la régulation de l'excitabilité cellulaire in vivo et son implication dans le développement des douleurs neuropathiques. Le rôle des sous-unités ß dans les douleurs neuropathiques a déjà été démontré dans notre groupe de recherche. A cause de leur rôle stabilisateur, l'augmentation des sous-unités ßl, ß2 et ß3 dans les DRG après SNI, conduit à une augmentation des Navs ancrés à la membrane. Dans mon travail de thèse, j'ai observé un nouveau mécanisme de régulation des sous-unités a par les sous-unités ß in vitro. Les sous-unités ßl et ß3 régulent l'état de glycosylation du canal Nav1.7, et stabilisent son expression membranaire. Ceci ouvre de nouvelles perspectives dans l'investigation de l'état de glycosylation des Navs dans des maladies impliquant les sous-unités ß, notamment les douleurs neuropathiques.