135 resultados para diastrophic dysplasia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD; OMIM 613330) is a dysostosis/dysplasia caused by recessive mutations in the homeobox-containing gene, NKX3-2 (formerly known as BAPX1). Because of the rarity of the condition, its diagnostic features and natural course are not well known. We describe clinical and radiographic findings in six patients (five of which with homozygous mutations in the NKX3-2 gene) and highlight the unusual and severe changes in the cervical spine and the neurologic complications. In individuals with SMMD, the trunk and the neck are short, while the limbs, fingers and toes are disproportionately long. Radiographs show a severe ossification delay of the vertebral bodies with sagittal and coronal clefts, missing ossification of the pubic bones, large round "balloon-like" epiphyses of the long bones, and presence of multiple pseudoepiphyses at all metacarpals and phalanges. Reduced or absent ossification of the cervical vertebrae leads to cervical instability with anterior or posterior kinking of the cervical spine (swan neck-like deformity, kyknodysostosis). As a result of the cervical spine instability or deformation, five of six patients in our series suffered cervical cord injury that manifested clinically as limb spasticity. Although the number of individuals observed is small, the high incidence of cervical spine deformation in SMMD is unique among skeletal dysplasias. Early diagnosis of SMMD by recognition of the radiographic pattern might prevent of the neurologic complications via prophylactic cervical spine stabilization. © 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a series of 514 consecutive diagnoses of skeletal dysplasia made over an 8-year period at a tertiary hospital in Kerala, India. The most common diagnostic groups were dysostosis multiplex group (n = 73) followed by FGFR3 (n = 49) and osteogenesis imperfecta and decreased bone density group (n = 41). Molecular confirmation was obtained in 109 cases. Clinical and radiographic evaluation was obtained in close diagnostic collaboration with expert groups abroad through Internet communication for difficult cases. This has allowed for targeted biochemical and molecular studies leading to the correct identification of rare or novel conditions, which has not only helped affected families by allowing for improved genetic counseling and prenatal diagnosis but also resulted in several scientific contributions. We conclude that (1) the spectrum of genetic bone disease in Kerala, India, is similar to that of other parts of the world, but recessive entities may be more frequent because of widespread consanguinity; (2) prenatal detection of skeletal dysplasias remains relatively rare because of limited access to expert prenatal ultrasound facilities; (3) because of the low accessibility to molecular tests, precise clinical-radiographic phenotyping remains the mainstay of diagnosis and counseling and of gatekeeping to efficient laboratory testing; (4) good phenotyping allows, a significant contribution to the recognition and characterization of novel entities. We suggest that the tight collaboration between a local reference center with dedicated personnel and expert diagnostic networks may be a proficient model to bring current diagnostics to developing countries. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metaphyseal dysplasia, Spahr type (MDST; OMIM 250400) was described in 1961 based on the observation of four children in one family who had rickets-like metaphyseal changes but normal blood chemistry and moderate short stature. Its molecular basis and nosologic status remained unknown. We followed up on those individuals and diagnosed the disorder in an additional member of the family. We used exome sequencing to ascertain the underlying mutation and explored its consequences on three-dimensional models of the affected protein. The MDST phenotype is associated with moderate short stature and knee pain in adults, while extra-skeletal complications are not observed. The sequencing showed that MDST segregated with a c.619T>G single nucleotide transversion in MMP13. The predicted non-conservative amino acid substitution, p.Trp207Gly, disrupts a crucial hydrogen bond in the calcium-binding region of the catalytic domain of the matrix metalloproteinase, MMP13. The MDST phenotype is associated with recessive MMP13 mutations, confirming the importance of this metalloproteinase in the metaphyseal growth plate. Dominant MMP13 mutations have been associated with metaphyseal anadysplasia (OMIM 602111), while a single child homozygous for a MMP13 mutation had been previously diagnosed as "recessive metaphyseal anadysplasia," that we conclude is the same nosologic entity as MDST. Molecular confirmation of MDST allows distinction of it from dominant conditions (e.g., metaphyseal dysplasia, Schmid type; OMIM # 156500) and from more severe multi-system conditions (such as cartilage-hair hypoplasia; OMIM # 250250) and to give precise recurrence risks and prognosis. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Extensive multilobar cortical dysplasia in infants commonly is first seen with catastrophic epilepsy and poses a therapeutic challenge with respect to control of epilepsy, brain development, and psychosocial outcome. Experience with surgical treatment of these lesions is limited, often not very encouraging, and holds a higher operative risk when compared with that in older children and adults. METHODS: Two infants were evaluated for surgical control of catastrophic epilepsy present since birth, along with a significant psychomotor developmental delay. Magnetic resonance imaging showed multilobar cortical dysplasia (temporoparietooccipital) with a good electroclinical correlation. They were treated with a temporal lobectomy and posterior (parietooccipital) disconnection. RESULTS: Both infants had excellent postoperative recovery and at follow-up (1.5 and 3.5 years) evaluation had total control of seizures with a definite "catch up" in their development, both motor and cognitive. No long-term complications have been detected to date. CONCLUSIONS: The incorporation of disconnective techniques in the surgery for extensive multilobar cortical dysplasia in infants has made it possible to achieve excellent seizure results by maximizing the extent of surgical treatment to include the entire epileptogenic zone. These techniques decrease perioperative morbidity, and we believe would decrease the potential for the development of long-term complications associated with large brain excisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dominant mutations in the receptor calcium channel gene TRPV4 have been associated with a family of skeletal dysplasias (metatropic dysplasia, pseudo-Morquio type 2, spondylometaphyseal dysplasia, Kozlowski type, brachyolmia, and familial digital arthropathy) as well as with dominantly inherited neuropathies (hereditary motor and sensory neuropathy 2C, scapuloperoneal spinal muscular atrophy, and congenital distal spinal muscular atrophy). While there is phenotypic overlap between the various members of each group, the two groups were considered to be totally separate with the former being strictly a structural skeletal condition and the latter group being confined to the peripheral nervous system. We report here on fetal akinesia as the presenting feature of severe metatropic dysplasia, suggesting that certain TRPV4 mutations can cause both a skeletal and a neuropathic phenotype. Three cases were detected on prenatal ultrasound because of absent movements in the second trimester. Case 4 presented with multiple joint contractures and absent limb movements at birth and was diagnosed with "fetal akinesia syndrome". Post-interruption and post-natal X-rays showed typical features of metatropic dysplasia in all four. Sequencing of the TRPV4 gene confirmed the presence of de novo heterozygous mutations predicting G78W (Case 1), T740I (Cases 2 and 3), and K276E (Case 4). Although some degree of restriction of movements is not uncommon in fetuses with skeletal dysplasia, akinesia as leading sign is unusual and suggests that certain TRPV4 mutations produce both chondrodysplasia and a peripheral neuropathy resulting in a severe "overlap" phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a consanguineous Arab family in which three sibs had an unusual skeletal dysplasia characterized by anterior defects of the spine leading to severe lumbar kyphosis and marked brachydactyly with cone epiphyses. The clinical phenotype also included dysmorphic facial features, epilepsy, and developmental delay. This constellation likely represents a previously undescribed skeletal dysplasia, most probably inherited in an autosomal recessive pattern. A homozygosity mapping approach has thus far failed to unearth the responsible gene as the region shared by these three sibs is 27.7 Mb in size and contains over 200 genes with no obvious candidate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disease characteristics. Recessive multiple epiphyseal dysplasia (EDM4/rMED) is characterized by joint pain (usually in the hips or knees); malformations of hands, feet, and knees; and scoliosis. Approximately 50% of affected individuals have some abnormal finding at birth, e.g., clubfoot, clinodactyly, or (rarely) cystic ear swelling. Onset of articular pain is variable but usually occurs in late childhood. Stature is usually within the normal range prior to puberty; in adulthood, stature is only slightly diminished and ranges from 150 to 180 cm. Functional disability is mild. Diagnosis/testing. Diagnosis of EDM4/rMED is based on clinical and radiographic findings. SLC26A2 is the only gene known to be associated with EDM4/rMED. Molecular genetic testing is available on a clinical basis. Management. Treatment of manifestations: physiotherapy for muscular strengthening; cautious use of analgesic medications such as nonsteroidal anti-inflammatory drugs (NSAIDs); orthopedic surgery as indicated. Surveillance: radiographs as indicated. Agents/circumstances to avoid: sports involving joint overload. Genetic counseling. EDM4/rMED is inherited in an autosomal recessive manner. At conception, each sib of a proband with EDM4/rMED has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Once an at-risk sib is known to be unaffected, the risk of his/her being a carrier is 2/3. Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk is possible if both disease-causing alleles in the family are known and the carrier status of the parents has been confirmed. Requests for prenatal testing for mild conditions such as EDM4/rMED are not common.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axial spondylometaphyseal dysplasia (SMD) (OMIM 602271) is an uncommon skeletal dysplasia characterized by metaphyseal changes of truncal-juxtatruncal bones, including the proximal femora, and retinal abnormalities. The disorder has not attracted much attention since initially reported; however, it has been included in the nosology of genetic skeletal disorders [Warman et al. (2011); Am J Med Genet Part A 155A:943-968] in part because of a recent publication of two additional cases [Isidor et al. (2010); Am J Med Genet Part A 152A:1550-1554]. We report here on the clinical and radiological manifestations in seven affected individuals from five families (three sporadic cases and two familial cases). Based on our observations and Isidor's report, the clinical and radiological hallmarks of axial SMD can be defined: The main clinical findings are postnatal growth failure, rhizomelic short stature in early childhood evolving into short trunk in late childhood, and thoracic hypoplasia that may cause mild to moderate respiratory problems in the neonatal period and later susceptibility to airway infection. Impaired visual acuity comes to medical attention in early life and function rapidly deteriorates. Retinal changes are diagnosed as retinitis pigmentosa or pigmentary retinal degeneration on fundoscopic examination and cone-rod dystrophy on electroretinogram. The radiological hallmarks include short ribs with flared, cupped anterior ends, mild spondylar dysplasia, lacy iliac crests, and metaphyseal irregularities essentially confined to the proximal femora. Equally affected sibling pairs of opposite gender and parental consanguinity are strongly suggestive of autosomal recessive inheritance. © 2011 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Campomelic dysplasia is a skeletal dysplasia characterized by flat face, Pierre Robin sequence, shortening and bowing of long bones and club feet. The authors describe a case of "acampomelic" campomelic dysplasia that differs from classical campomelic dysplasia by the absence of bone bowing. This condition is among the most common skeletal dysplasias but is often misdiagnosed in the absence of overt campomelia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is a genetic disorder characterized by absence or deficient function of hair, teeth and sweat glands. Affected children may experience life-threatening high fever resulting from reduced ability to sweat. Mice with the Tabby phenotype share many symptoms with human XLHED patients because both phenotypes are caused by mutations of the syntenic ectodysplasin A gene (Eda) on the X chromosome. Two main splice variants of Eda, encoding EDA1 and EDA2, engage the tumor necrosis factor (TNF) family receptors EDAR and XEDAR, respectively. The EDA1 protein, acting through EDAR, is essential for proper formation of skin appendages; the functions of EDA2 and XEDAR are not known. EDA1 must be proteolytically processed to a soluble form to be active. Here, we show that treatment of pregnant Tabby mice with a recombinant form of EDA1, engineered to cross the placental barrier, permanently rescues the Tabby phenotype in the offspring. Notably, sweat glands can also be induced by EDA1 after birth. This is the first example of a developmental genetic defect that can be permanently corrected by short-term treatment with a recombinant protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context:Loss-of-function mutations in PROK2 and PROKR2 have been implicated in Kallmann syndrome (KS), characterized by hypogonadotropic hypogonadism and anosmia. Recent data suggest overlapping phenotypes/genotypes between KS and congenital hypopituitarism (CH), including septo-optic dysplasia (SOD).Objective:We screened a cohort of patients with complex forms of CH (n = 422) for mutations in PROK2 and PROKR2.Results:We detected 5 PROKR2 variants in 11 patients with SOD/CH: novel p.G371R and previously reported p.A51T, p.R85L, p.L173R, and p.R268C-the latter 3 being known functionally deleterious variants. Surprisingly, 1 patient with SOD was heterozygous for the p.L173R variant, whereas his phenotypically unaffected mother was homozygous for the variant. We sought to clarify the role of PROKR2 in hypothalamopituitary development through analysis of Prokr2(-/-) mice. Interestingly, these revealed predominantly normal hypothalamopituitary development and terminal cell differentiation, with the exception of reduced LH; this was inconsistent with patient phenotypes and more analogous to the healthy mother, although she did not have KS, unlike the Prokr2(-/-) mice.Conclusions:The role of PROKR2 in the etiology of CH, SOD, and KS is uncertain, as demonstrated by no clear phenotype-genotype correlation; loss-of-function variants in heterozygosity or homozygosity can be associated with these disorders. However, we report a phenotypically normal parent, homozygous for p.L173R. Our data suggest that the variants identified herein are unlikely to be implicated in isolation in these disorders; other genetic or environmental modifiers may also impact on the etiology. Given the phenotypic variability, genetic counseling may presently be inappropriate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dyssegmental dysplasia, Silverman-Handmaker type (DDSH; #MIM 224410) is an autosomal recessive form of lethal dwarfism characterized by a defect in segmentation and fusion of vertebral bodies components ("anisospondyly") and by severe limb shortening. It is caused by mutations in the perlecan gene (HSPG2), but so far, only three molecularly confirmed cases have been reported. We report a novel case of DDSH in a fetus that presented at 15 weeks gestation with encephalocele, severe micromelic dwarfism and narrow thorax. After termination of pregnancy, radiographs showed short ribs, short and bent long bones and anisospondyly of two vertebral bodies. The fetus was homozygous for a previously undescribed null mutation in HSPG2.