132 resultados para degenerate primers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shigella, a Gram-negative invasive enteropathogenic bacterium responsible for bacillary dysentery, causes the rupture, invasion, and inflammatory destruction of the human colonic mucosa. We explored the mechanisms of protection mediated by Shigella LPS-specific secretory IgA (SIgA), the major mucosal Ab induced upon natural infection. Bacteria, SIgA, or SIgA-S. flexneri immune complexes were administered into rabbit ligated intestinal loops containing a Peyer's patch. After 8 h, localizations of bacteria, SIgA, and SIgA-S. flexneri immune complexes were examined by immunohistochemistry and confocal microscopy imaging. We found that anti-Shigella LPS SIgA, mainly via immune exclusion, prevented Shigella-induced inflammation responsible for the destruction of the intestinal barrier. Besides this luminal trapping, a small proportion of SIgA-S. flexneri immune complexes were shown to enter the rabbit Peyer's patch and were internalized by dendritic cells of the subepithelial dome region. Local inflammatory status was analyzed by quantitative RT-PCR using newly designed primers for rabbit pro- and anti-inflammatory mediator genes. In Peyer's patches exposed to immune complexes, limited up-regulation of the expression of proinflammatory genes, including TNF-alpha, IL-6, Cox-2, and IFN-gamma, was observed, consistent with preserved morphology. In contrast, in Peyer's patches exposed to Shigella alone, high expression of the same mediators was measured, indicating that neutralizing SIgA dampens the proinflammatory properties of Shigella. These results show that in the form of immune complexes, SIgA guarantees both immune exclusion and neutralization of translocated bacteria, thus preserving the intestinal barrier integrity by preventing bacterial-induced inflammation. These findings add to the multiple facets of the noninflammatory properties of SIgA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the -40 sequence (TTGGC ... ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT ... ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and suggest that ANR-mediated cyanogenesis contributes to the suppression of black root rot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters, experimentally defined by a transcription start site (TSS). There may be multiple promoter entries for a single gene. The underlying experimental evidence comes from journal articles and, starting from release 73, from 5' ESTs of full-length cDNA clones used for so-called in silico primer extension. Access to promoter sequences is provided by pointers to TSS positions in nucleotide sequence entries. The annotation part of an EPD entry includes a description of the type and source of the initiation site mapping data, links to other biological databases and bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. Web-based interfaces have been developed that enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria and to navigate to related databases exploiting different cross-references. Tools for analysing sequence motifs around TSSs defined in EPD are provided by the signal search analysis server. EPD can be accessed at http://www.epd. isb-sib.ch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both the underlying molecular mechanisms and the kinetics of TCR repertoire selection following vaccination against tumor Ags in humans have remained largely unexplored. To gain insight into these questions, we performed a functional and structural longitudinal analysis of the TCR of circulating CD8(+) T cells specific for the HLA-A2-restricted immunodominant epitope from the melanocyte differentiation Ag Melan-A in a melanoma patient who developed a vigorous and sustained Ag-specific T cell response following vaccination with the corresponding synthetic peptide. We observed an increase in functional avidity of Ag recognition and in tumor reactivity in the postimmune Melan-A-specific populations as compared with the preimmune blood sample. Improved Ag recognition correlated with an increase in the t(1/2) of peptide/MHC interaction with the TCR as assessed by kinetic analysis of A2/Melan-A peptide multimer staining decay. Ex vivo analysis of the clonal composition of Melan-A-specific CD8(+) T cells at different time points during vaccination revealed that the response was the result of asynchronous expansion of several distinct T cell clones. Some of these T cell clones were also identified at a metastatic tumor site. Collectively, these data show that tumor peptide-driven immune stimulation leads to the selection of high-avidity T cell clones of increased tumor reactivity that independently evolve within oligoclonal populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Despite the continuous production of genome sequence for a number of organisms, reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularly true for genomes for which there is not a large collection of known gene sequences, such as the recently published chicken genome. We used the chicken sequence to test comparative and homology-based gene-finding methods followed by experimental validation as an effective genome annotation method. RESULTS: We performed experimental evaluation by RT-PCR of three different computational gene finders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram was computed and each component of it was evaluated. The results showed that de novo comparative methods can identify up to about 700 chicken genes with no previous evidence of expression, and can correctly extend about 40% of homology-based predictions at the 5' end. CONCLUSIONS: De novo comparative gene prediction followed by experimental verification is effective at enhancing the annotation of the newly sequenced genomes provided by standard homology-based methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TMPRSS3 encodes a transmembrane serine protease that contains both LDLRA and SRCR domains and is mutated in non-syndromic autosomal recessive deafness (DFNB8/10). To study its function, we cloned the mouse ortholog which maps to Mmu17, which is structurally similar to the human gene and encodes a polypeptide with 88% identity to the human protein. RT-PCR and RNA in situ hybridization on rat and mouse cochlea revealed that Tmprss3 is expressed in the spiral ganglion, the cells supporting the organ of Corti and the stria vascularis. RT-PCR on mouse tissues showed expression in the thymus, stomach, testis and E19 embryos. Transient expression of wild-type or tagged TMPRSS3 protein showed a primary localization in the endoplasmic reticulum. The epithelial amiloride-sensitive sodium channel (ENaC), which is expressed in many sodium-reabsorbing tissues including the inner ear and is regulated by membrane-bound channel activating serine proteases (CAPs), is a potential substrate of TMPRSS3. In the Xenopus oocyte expression system, proteolytic processing of TMPRSS3 was associated with increased ENaC mediated currents. In contrast, 6 TMPRSS3 mutants (D103G, R109W, C194F, W251C, P404L, C407R) causing deafness and a mutant in the catalytic triad of TMPRSS3 (S401A), failed to undergo proteolytic cleavage and activate ENaC. These data indicate that important signaling pathways in the inner ear are controlled by proteolytic cleavage and suggest: (i) the existence of an auto-catalytic processing by which TMPRSS3 would become active, and (ii) that ENaC could be a substrate of TMPRSS3 in the inner ear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Decreasing exposure to airborne particulates was previously associated with reduced age-related decline in lung function. However, whether the benefit from improved air quality depends on genetic background is not known. Recent evidence points to the involvement of the genes p53 and p21 and of the cell cycle control gene cyclin D1 (CCND1) in the response of bronchial cells to air pollution. OBJECTIVE: We determined in 4,326 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) whether four single-nucleotide polymorphisms in three genes [CCND1 (rs9344 [P242P], rs667515), p53 (rs1042522 [R72P]), and p21 (rs1801270 [S31R])] modified the previously observed attenuation of the decline in the forced expiratory flow between 25% and 75% of the forced vital capacity (FEF(25-75)) associated with improved air quality. METHODS: Subjects of the prospective population-based SAPALDIA cohort were assessed in 1991 and 2002 by spirometry, questionnaires, and biological sample collection for genotyping. We assigned spatially resolved concentrations of particulate matter with aerodynamic diameter < or = 10 microm (PM(10)) to each participant's residential history 12 months before the baseline and follow-up assessments. RESULTS: The effect of diminishing PM(10) exposure on FEF(25-75) decline appeared to be modified by p53 R72P, CCND1 P242P, and CCND1 rs667515. For example, a 10-microg/m(3) decline in average PM(10) exposure over an 11-year period attenuated the average annual decline in FEF(25-75) by 21.33 mL/year (95% confidence interval, 10.57-32.08) among participants homozygous for the CCND1 (P242P) GG genotype, by 13.72 mL/year (5.38-22.06) among GA genotypes, and by 6.00 mL/year (-4.54 to 16.54) among AA genotypes. CONCLUSIONS: Our results suggest that cell cycle control genes may modify the degree to which improved air quality may benefit respiratory function in adults.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: In insulin-secreting cells, activation of the c-Jun NH(2)-terminal kinase (JNK) pathway triggers apoptosis. Whereas JNK1 and JNK2 are ubiquitously produced, JNK3 has been described exclusively in neurons. This report aims to characterise the expression and role in apoptosis of the three JNK isoforms in insulin-secreting cells exposed to cytokines. METHODS: Sections of human and mouse pancreases were used for immunohistochemistry studies with isoform-specific anti-JNK antibodies. Human, pig, mouse and rat pancreatic islets were isolated by enzymatic digestion and RNA or protein extracts were prepared. RNA and protein levels were determined by quantitative RT-PCR and western blotting respectively, using JNK-isoform-specific primers and isoform-specific antibodies; activities of the three JNK isoforms were determined by kinase assays following quantitative immunoprecipitation/depletion of JNK3. JNK silencing was performed with small interfering RNAs and apoptotic rates were determined in INS-1E cells by scoring cells displaying pycnotic nuclei. RESULTS: JNK3 and JNK2 mRNAs are the predominant isoforms expressed in human pancreatic islets. JNK3 is nuclear while JNK2 is also cytoplasmic. In INS-1E cells, JNK3 knockdown increases c-Jun levels and caspase-3 cleavage and sensitises cells to cytokine-induced apoptosis; in contrast, JNK1 or JNK2 knockdown is protective. CONCLUSIONS/INTERPRETATION: In insulin-secreting cells, JNK3 plays an active role in preserving pancreatic beta cell mass from cytokine attacks. The specific localisation of JNK3 in the nucleus, its recruitment by cytokines, and its effects on key transcription factors such as c-Jun, indicate that JNK3 is certainly an important player in the transcriptional control of genes expressed in insulin-secreting cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fas ligand (FasL) exerts potent proapoptotic and proinflammatory actions on epidermal keratinocytes and has been implicated in the pathogenesis of eczema, toxic epidermal necrolysis, and drug-induced skin eruptions. We used reconstructed human epidermis to investigate the mechanisms of FasL-induced inflammatory responses and their relationships with FasL-triggered caspase activity. Caspase activity was a potent antagonist of the pro-inflammatory gene expression triggered by FasL prior to the onset of cell death. Furthermore, we found that FasL-stimulated autocrine production of epidermal growth factor receptor (EGFR) ligands, and the subsequent activation of EGFR and ERK1 and ERK2 mitogen-activated protein kinases, were obligatory extracellular steps for the FasL-induced expression of a subset of inflammatory mediators, including CXCL8/interleukin (IL)-8, ICAM-1, IL-1alpha, IL-1beta, CCL20/MIP-3alpha, and thymic stromal lymphopoietin. These results expand the known physiological role of EGFR and its ligands from promoting keratinocyte mitogenesis and survival to mediating FasL-induced epidermal inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: We studied human cytomegalovirus (CMV) donor-to-recipient transmission patterns in organ transplantation by analyzing genomic variants on the basis of CMV glycoprotein B (gB) genotyping. METHODS: Organ transplant recipients were included in the study if they had CMV viremia, if they had received an organ from a CMV-seropositive donor, and if there was at least 1 other recipient of an organ from the same donor who developed CMV viremia. Genotypes (gB1-4) were determined by real-time polymerase chain reaction. RESULTS: Forty-seven recipients of organs from 21 donors developed CMV viremia. Twenty-three recipients had a pretransplant donor/recipient (D/R) CMV serostatus of D(+)/R(+), and 24 had a serostatus of D(+)/R(-). The prevalences of genotypes in recipients were as follows: for gB1, 51% (n = 24); for gB2, 19% (n = 9); for gB3, 9% (n = 4); for gB4, 0% (n = 0); and for mixed infection, 21% (n = 10). Recipients of an organ from a common donor had infection with CMV of the same gB genotype in 12 (57%) of 21 instances. Concordance between genotypes was higher among seronegative (i.e., D(+)/R(-)) recipients than among seropositive (D(+)/R(+)) recipients, although discordances resulting from the transmission of multiple strains were seen. In seropositive recipients, transmission of multiple strains from the donor could not be differentiated from reactivation of a recipient's own strains. CONCLUSION: Our analysis of strain concordance among recipients of organs from common donors showed that transmission of CMV has complex dynamic patterns. In seropositive recipients, transmission or reactivation of multiple CMV strains is possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a new rapid and efficient polymerase chain reaction (PCR)-based site-directed mutagenesis method. This procedure is effective with any plasmid and it employs four oligonucleotide primers. One primer contains the desired mutation, the second is oriented in the opposite direction (one of these two primers should be phosphorylated), and the third and fourth should be coding in complementary fashion for a unique restriction site to be introduced in a nonessential region. The method consists of two simultaneous PCR reactions; the PCR products are digested with the enzyme that recognizes the newly introduced unique restriction site and then ligased and used to transform competent bacteria. Additionally, the use of Dpn I facilitates the elimination of template DNA. The newly introduced restriction site is essential for ligation in the correct orientation of the two-PCR products and is further used for mutant screening. Resulting plasmids carry both the new restriction site and the desired mutation. Using this method, more than 20 mutants have already been generated (using two different kinds of templates); all these mutants were sequenced for the desired mutation and transfected into AtT-20 cells and the expressed mutant proteins encoded by the vector were assayed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To assess the allelic variation of the VMD2 gene in patients with Best disease and age-related macular degeneration (AMD). METHODS: Three hundred twenty-one AMD patients, 192 ethnically similar control subjects, 39 unrelated probands with familial Best disease, and 57 unrelated probands with the ophthalmoscopic findings of Best disease but no family history were screened for sequence variations in the VMD2 gene by single-strand conformation polymorphism (SSCP) analysis. Amplimers showing a bandshift were reamplified and sequenced bidirectionally. In addition, the coding regions of the VMD2 gene were completely sequenced in six probands with familial Best disease who showed no SSCP shift. RESULTS: Forty different probable or possible disease-causing mutations were found in one or more Best disease or AMD patients. Twenty-nine of these variations are novel. Of the 39 probands with familial Best disease, mutations were detected in all 39 (33 by SSCP and 6 by DNA sequencing). SSCP screening of the 57 probands with a clinical diagnosis of Best disease but no family history revealed 16 with mutations. Mutations were found in 5 of 321 AMD patients (1.5%), a fraction that was not significantly greater than in control individuals (0/192, 0%). CONCLUSIONS: Patients with the clinical diagnosis of Best disease are significantly more likely to have a mutation in the VMD2 gene if they also have a positive family history. These findings suggest that a small fraction of patients with the clinical diagnosis of AMD may actually have a late-onset variant of Best disease, whereas at the same time, a considerable fraction of isolated patients with the ophthalmoscopic features of Best disease are probably affected with some other macular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rho GTPases integrate control of cell structure and adhesion with downstream signaling events. In keratinocytes, RhoA is activated at early times of differentiation and plays an essential function in establishment of cell-cell adhesion. We report here that, surprisingly, Rho signaling suppresses downstream gene expression events associated with differentiation. Similar inhibitory effects are exerted by a specific Rho effector, CRIK (Citron kinase), which is selectively down-modulated with differentiation, thereby allowing the normal process to occur. The suppressing function of Rho/CRIK on differentiation is associated with induction of KyoT1/2, a LIM domain protein gene implicated in integrin-mediated processes and/or Notch signaling. Like activated Rho and CRIK, elevated KyoT1/2 expression suppresses differentiation. Thus, Rho signaling exerts an unexpectedly complex role in keratinocyte differentiation, which is coupled with induction of KyoT1/2, a LIM domain protein gene with a potentially important role in control of cell self renewal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Islet-brain1 (IB1) or c-Jun NH2 terminal kinase interacting protein-1 (JIP-1), the product of the MAPK8IP1 gene, functions as a neuronal scaffold protein to allow signalling specificity. IB1/JIP-1 interacts with many cellular components including the reelin receptor ApoER2, the low-density lipoprotein receptor-related protein (LRP), kinesin and the Alzheimer's amyloid precursor protein. Coexpression of IB1/JIP-1 with other components of the c-Jun NH2 terminal-kinase (JNK) pathway activates the JNK activity; conversely, selective disruption of IB1/JIP-1 in mice reduces the stress-induced apoptosis of neuronal cells. We therefore hypothesized that IB1/JIP-1 is a risk factor for Alzheimer's disease (AD). By immunocytochemistry, we first colocalized the presence of IB1/JIP-1 with JNK and phosphorylated tau in neurofibrillary tangles. We next identified a -499A>G polymorphism in the 5' regulatory region of the MAPK8IP1 gene. In two separate French populations the -499A>G polymorphism of MAPK8IP1 was not associated with an increased risk to AD. However, when stratified on the +766C>T polymorphism of exon 3 of the LRP gene, the IB1/JIP-1 polymorphism was strongly associated with AD in subjects bearing the CC genotype in the LRP gene. The functional consequences of the -499A>G polymorphism of MAPK8IP1 was investigated in vitro. In neuronal cells, the G allele increased transcriptional activity and was associated with an enhanced binding activity. Taken together, these data indicate that the increased transcriptional activity in the presence of the G allele of MAPK8IP1 is a risk factor to the onset of in patients bearing the CC genotype of the LRP gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genes encoding alpha- and beta-tubulins have been widely sampled in most major fungal phyla and they are useful tools for fungal phylogeny. Here, we report the first isolation of alpha-tubulin sequences from arbuscular mycorrhizal fungi (AMF). In parallel, AMF beta-tubulins were sampled and analysed to identify the presence of paralogs of this gene. The AMF alpha-tubulin amino acid phylogeny was congruent with the results previously reported for AMF beta-tubulins and showed that AMF tubulins group together at a basal position in the fungal clade and showed high sequence similarities with members of the Chytridiomycota. This is in contrast with phylogenies for other regions of the AMF genome. The amount and nature of substitutions are consistent with an ancient divergence of both orthologs and paralogs of AMF tubulins. At the amino acid level, however, AMF tubulins have hardly evolved from those of the chytrids. This is remarkable given that these two groups are ancient and the monophyletic Glomeromycota probably diverged from basal fungal ancestors at least 500 million years ago. The specific primers we designed for the AMF tubulins, together with the high molecular variation we found among the AMF species we analysed, make AMF tubulin sequences potentially useful for AMF identification purposes.