60 resultados para controlled-extended release of fertilizers
Resumo:
PURPOSE: To study VP22 light controlled delivery of antisense oligonucleotide (ODN) to ocular cells in vitro and in vivo. METHODS: The C-terminal half of VP22 was expressed in Escherichia coli, purified and mixed with 20 mer phosphorothioate oligonucleotides (ODNs) to form light sensitive complex particles (vectosomes). Uptake of vectosomes and light induced redistribution of ODNs in human choroid melanoma cells (OCM-1) and in human retinal pigment epithelial cells (ARPE-19) were studied by confocal and electron microscopy. The effect of vectosomes formed with an antisense ODN corresponding to the 3'-untranslated region of the human c-raf kinase gene on the viability and the proliferation of OCM-1 cells was assessed before and after illumination. Cells incubated with vectosomes formed with a mismatched ODN, a free antisense ODN or a free mismatched ODN served as controls. White light transscleral illumination was carried out 24 h after the intravitreal injection of vectosomes in rat eyes. The distribution of fluorescent vectosomes and free fluorescent ODN was evaluated on cryosections by fluorescence microscopy before, and 1 h after illumination. RESULTS: Overnight incubation of human OCM-1 and ARPE-19 cells with vectosomes lead to intracellular internalization of the vectosomes. When not illuminated, internalized vectosomes remained stable within the cell cytoplasm. Disruption of vectosomes and release of the complexed ODN was induced by illumination of the cultures with a cold white light or a laser beam. In vitro, up to 60% inhibition of OCM-1 cell proliferation was observed in illuminated cultures incubated with vectosomes formed with antisense c-raf ODN. No inhibitory effect on the OCM-1 cell proliferation was observed in the absence of illumination or when the cells are incubated with a free antisense c-raf ODN and illuminated. In vivo, 24 h after intravitreal injection, vectosomes were observed within the various retinal layers accumulating in the cytoplasm of RPE cells. Transscleral illumination of the injected eyes with a cold white light induced disruption of the vectosomes and a preferential localization of the "released" ODNs within the cell nuclei of the ganglion cell layer, the inner nuclear layer and the RPE cells. CONCLUSIONS: In vitro, VP22 light controlled delivery of ODNs to ocular cells nuclei was feasible using white light or laser illumination. In vivo, a single intravitreal injection of vectosomes, followed by transscleral illumination allowed for the delivery of free ODNs to retinal and RPE cells.
Resumo:
BACKGROUND: Clinical small-caliber vascular prostheses are unsatisfactory. Reasons for failure are early thrombosis and late intimal hyperplasia. We thus prepared biodegradable small-caliber vascular prostheses using electrospun polycaprolactone (PCL) with slow-releasing paclitaxel (PTX), an antiproliferative drug. METHODS AND RESULTS: PCL solutions containing PTX were used to prepare nonwoven nanofibre-based 2-mm ID prostheses. Mechanical morphological properties and drug loading, distribution, and release were studied in vitro. Infrarenal abdominal aortic replacement was carried out with nondrug-loaded and drug-loaded prostheses in 18 rats and followed for 6 months. Patency, stenosis, tissue reaction, and drug effect on endothelialization, vascular remodeling, and neointima formation were studied in vivo. In vitro prostheses showed controlled morphology mimicking extracellular matrix with mechanical properties similar to those of native vessels. PTX-loaded grafts with suitable mechanical properties and controlled drug-release were obtained by factorial design. In vivo, both groups showed 100% patency, no stenosis, and no aneurysmal dilatation. Endothelial coverage and cell ingrowth were significantly reduced at 3 weeks and delayed at 12 and 24 weeks in PTX grafts, but as envisioned, neointima formation was significantly reduced in these grafts at 12 weeks and delayed at 6 months. CONCLUSIONS: Biodegradable, electrospun, nanofibre, polycaprolactone prostheses are promising because in vitro they maintain their mechanical properties (regardless of PTX loading), and in vivo show good patency, reendothelialize, and remodel with autologous cells. PTX loading delays endothelialization and cellular ingrowth. Conversely, it reduces neointima formation until the end point of our study and thus may be an interesting option for small caliber vascular grafts.
Resumo:
Transmembrane receptor-kinases are widespread throughout eukaryotes and their activities are known to regulate all kinds of cellular responses in diverse organs and cell types. In order to guarantee the correct amplitude and duration of signals, receptor levels at the cellular surface need to be tightly controlled. The regulation of receptor degradation is the most direct way to achieve this and elaborate mechanisms are in place to control this process. Therefore, the rate of receptor degradation is a parameter of central importance for understanding the dynamics of a signal transduction cascade. Unfortunately, degradation of transmembrane receptors is a complicated multistep process that involves internalization from the plasma membrane, invagination into the lumen of endosomal compartments, and finally fusion with the vacuole for degradation by vacuolar proteases. Therefore, degradation should be measured in an as noninvasive way as possible, such as not to interfere with the complicated transport processes. Here, a method for minimally invasive, in vivo turn-over measurements in intact organs is provided. This technique was used for quantifying the turn-over rates of the Brassinosteroid receptor kinase BRI1 (BRASSINOSTEROID INSENSITIVE 1) in Arabidopsis thaliana root meristems. Pulse-chase expression of a fluorescently labeled BRI1 variant was used and its turn-over rate was determined by quantitative confocal microscopy. This method is well suited to measure turn-over of transmembrane kinases, but can evidently be extended to measure turn-over of any types of transmembrane proteins.
Resumo:
Glucose production by liver is a major physiological function, which is required to prevent development of hypoglycemia in the postprandial and fasted states. The mechanism of glucose release from hepatocytes has not been studied in detail but was assumed instead to depend on facilitated diffusion through the glucose transporter GLUT2. Here, we demonstrate that in the absence of GLUT2 no other transporter isoforms were overexpressed in liver and only marginally significant facilitated diffusion across the hepatocyte plasma membrane was detectable. However, the rate of hepatic glucose output was normal. This was evidenced by (i) the hyperglycemic response to i.p. glucagon injection; (ii) the in vivo measurement of glucose turnover rate; and (iii) the rate of release of neosynthesized glucose from isolated hepatocytes. These observations therefore indicated the existence of an alternative pathway for hepatic glucose output. Using a [14C]-pyruvate pulse-labeling protocol to quantitate neosynthesis and release of [14C]glucose, we demonstrated that this pathway was sensitive to low temperature (12 degreesC). It was not inhibited by cytochalasin B nor by the intracellular traffic inhibitors brefeldin A and monensin but was blocked by progesterone, an inhibitor of cholesterol and caveolae traffic from the endoplasmic reticulum to the plasma membrane. Our observations thus demonstrate that hepatic glucose release does not require the presence of GLUT2 nor of any plasma membrane glucose facilitative diffusion mechanism. This implies the existence of an as yet unsuspected pathway for glucose release that may be based on a membrane traffic mechanism.
Resumo:
The mechanism of action of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) involves the carrier-mediated and potentially vesicular release of monoamines. We assessed the effects of the sympatholytic α₂-adrenergic receptor agonist clonidine (150 μg p.o.), which inhibits the neuronal vesicular release of norepinephrine, on the cardiovascular and psychotropic response to MDMA (125 mg p.o.) in 16 healthy subjects. The study used a randomized, double-blind, placebo-controlled crossover design with four experimental sessions. The administration of clonidine 1 h before MDMA reduced the MDMA-induced increases in plasma norepinephrine concentrations and blood pressure but only to the extent that clonidine lowered norepinephrine levels and blood pressure compared with placebo. Thus, no interaction was found between the cardiovascular effects of the two drugs. Clonidine did not affect the psychotropic effects or pharmacokinetics of MDMA. The lack of an interaction of the effects of clonidine and MDMA indicates that vesicular release of norepinephrine, which is inhibited by clonidine, does not critically contribute to the effects of MDMA in humans. Although clonidine may be used in the treatment of stimulant-induced hypertensive reactions, the present findings do not support a role for α₂-adrenergic receptor agonists in the prevention of psychostimulant dependence.
Resumo:
Astrocytes are the most abundant glial cell type in the brain. Although not apposite for long-range rapid electrical communication, astrocytes share with neurons the capacity of chemical signaling via Ca(2+)-dependent transmitter exocytosis. Despite this recent finding, little is known about the specific properties of regulated secretion and vesicle recycling in astrocytes. Important differences may exist with the neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca(2+) from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We here take advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses (Voglmaier et al., 2006; Balaji and Ryan, 2007); we combine epifluorescence and total internal reflection fluorescence imaging to investigate with unprecedented temporal and spatial resolution, the stimulus-secretion coupling underlying exo-endocytosis of glutamatergic synaptic-like microvesicles (SLMVs) in astrocytes. Our main findings indicate that (1) exo-endocytosis in astrocytes proceeds with a time course on the millisecond time scale (tau(exocytosis) = 0.24 +/- 0.017 s; tau(endocytosis) = 0.26 +/- 0.03 s) and (2) exocytosis is controlled by local Ca(2+) microdomains. We identified submicrometer cytosolic compartments delimited by endoplasmic reticulum tubuli reaching beneath the plasma membrane and containing SLMVs at which fast (time-to-peak, approximately 50 ms) Ca(2+) events occurred in precise spatial-temporal correlation with exocytic fusion events. Overall, the above characteristics of transmitter exocytosis from astrocytes support a role of this process in fast synaptic modulation.
Resumo:
We investigated the role of the number of loci coding for a neutral trait on the release of additive variance for this trait after population bottlenecks. Different bottleneck sizes and durations were tested for various matrices of genotypic values, with initial conditions covering the allele frequency space. We used three different types of matrices. First, we extended Cheverud and Routman's model by defining matrices of "pure" epistasis for three and four independent loci; second, we used genotypic values drawn randomly from uniform, normal, and exponential distributions; and third we used two models of simple metabolic pathways leading to physiological epistasis. For all these matrices of genotypic values except the dominant metabolic pathway, we find that, as the number of loci increases from two to three and four, an increase in the release of additive variance is occurring. The amount of additive variance released for a given set of genotypic values is a function of the inbreeding coefficient, independently of the size and duration of the bottleneck. The level of inbreeding necessary to achieve maximum release in additive variance increases with the number of loci. We find that additive-by-additive epistasis is the type of epistasis most easily converted into additive variance. For a wide range of models, our results show that epistasis, rather than dominance, plays a significant role in the increase of additive variance following bottlenecks.
Resumo:
Anterior spinal infection (prevertebral abscess and/or discitis) after posterior instrumentation for vertebral fractures is a challenging complication, since a new implant may become necessary anteriorly, in a septic environment. Generally accepted management guidelines are yet to be established. The authors present a case of posterior instrumentation for fractures of T12 and L1, complicated after 9 months with an anterior infection (prevertebral abscess and discitis) with extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli). This case is unique in that the multi-resistant organism was isolated only after the second stage of infection treatment, which consisted of anterior débridement and anterior implantation of titanium cages and rods. In this particular case, infection was controlled despite implantation of multiple cages, screws and rods, and fusion was achieved, by means of intravenous antibiotic treatment for 12 months. At the latest follow-up, 24 months post surgery, there was no evidence of infection. This problem case may be helpful for surgeons confronted with spinal deformities secondary to infections with multi-resistant organisms.
Resumo:
Novel formulations of cationic nanoemulsions based on three different lipids were developed to strengthen the attraction of the polyanionic oligonucleotide (ODN) macromolecules to the cationic moieties on the oil nanodroplets. These formulations were developed to prolong the release of the ODN from the nanoemulsion under appropriate physiological dilutions as encountered in the eye following topical application. Increasing the concentration of the new cationic lipid exhibiting two cationic amine groups (AOA) in the emulsion from 0.05% to 0.4% did not alter markedly the particle size or zeta potential value of the blank cationic nanoemulsion. The extent of ODN association did not vary significantly when the initial concentration of ODN remained constant at 10 microM irrespective of the cationic lipid nature. However, the zeta potential value dropped consistently with the low concentrations of 0.05% and 0.1% of AOA in the emulsions suggesting that an electrostatic attraction occurred between the cationic lipids and the polyanionic ODN molecules at the o/w interface. Only the nanoemulsion prepared with N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium salts (DOTAP) remained physically stable over time. DOTAP cationic lipid nanoemulsion was the most efficient formulation capable of retaining the ODN despite the high dilution of 1:100 with simulated tear solution (STS). Less than 10% of the ODN was exchanged in contrast to 40-50% with the other cationic nanoemulsions. The in-vitro release kinetic behavior of ODN exchange with physiological anions present in the STS appears to be complex and difficult to characterize using mathematical fitting model equations. Further pharmacokinetic studies are needed to verify our kinetic assumptions and confirm the in-vitro ODN release profile from DOTAP cationic nanoemulsions.
Resumo:
Trimethyltin (TMT) is a neurotoxicant known to induce early microglial activation. The present study was undertaken to investigate the role played by these microglial cells in the TMT-induced neurotoxicity. The effects of TMT were investigated in monolayer cultures of isolated microglia or in neuron-enriched cultures and in neuron-microglia and astrocyte-microglia cocultures. The end points used were morphological criteria; evaluation of cell death and cell proliferation; and measurements of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) release in culture supernatant. The results showed that, in cultures of microglia, TMT (10(-6) M) caused, after a 5-day treatment, an increased release of TNF-alpha, without affecting microglial shape or cell viability. When microglia were cocultured with astrocytes, TNF-alpha release was decreased to undetectable levels. In contrast, in neuron-microglia cocultures, TNF-alpha levels were found to increase at lower concentrations of TMT (i.e., 10(-8) M). Moreover, at 10(-6) M of TMT, microglia displayed further morphological activation, as suggested by process retraction and by decrease in cell size. No morphological activation was observed in cultures of isolated microglial cells and in astrocyte-microglia cocultures. With regard to neurons, 10(-6) M of TMT induced about 30% of cell death, when applied to neuron-enriched cultures, whereas close to 100% of neuronal death was observed in neuron-microglia cocultures. In conclusion, whereas astrocytes may rather dampen the microglial activation by decreasing microglial TNF-alpha production, neuronal-microglial interactions lead to enhanced microglial activation. This microglial activation, in turn, exacerbates the neurotoxic effects of TMT. TNF-alpha may play a major role in such cell-cell communications.
Resumo:
Purpose To characterize in vitro the loadability, physical properties, and release of irinotecan and doxorubicin from two commercially available embolization microspheres. Materials and Methods DC Bead (500-700 μm) and Hepasphere (400-600 μm) microspheres were loaded with either doxorubicin or irinotecan solutions. Drug amount was quantified with spectrophotometry, bead elasticity was measured under compression, and bead size and loading homogeneity were assessed with microscopy image analysis. Drug release was measured over 1-week periods in saline by using a pharmacopeia flow-through method. Results Almost complete drug loading was obtained for both microsphere types and drugs. Doxorubicin-loaded DC Beads maintained their spherical shape throughout the release. In contrast, Hepaspheres showed less homogeneous doxorubicin loading and, after release, some fractured microspheres. Incomplete doxorubicin release was observed in saline over 1 week (27% ± 2 for DC beads and 18% ± 7 for Hepaspheres; P = .013). About 75% of this amount was released within 2.2 hours for both beads. For irinotecan, complete release was obtained for both types of beads, in a sustained manner over 2-3 hours for DC Beads, and in a significantly faster manner as a 7-minute burst for Hepaspheres. Conclusions The two drug-eluting microspheres could be efficiently loaded with both drugs. Incomplete doxorubicin release was attributed to strong drug-bead ionic interactions. Weaker interactions were observed with irinotecan, which led to faster drug release.
Resumo:
The indication for pulmonary artery banding is currently limited by several factors. Previous attempts have failed to produce adjustable pulmonary artery banding with reliable external regulation. An implantable, telemetrically controlled, battery-free device (FloWatch) developed by EndoArt SA, a medical company established in Lausanne, Switzerland, for externally adjustable pulmonary artery banding was evaluated on minipigs and proved to be effective for up to 6 months. The first human implant was performed on a girl with complete atrioventricular septal defect with unbalanced ventricles, large patent ductus arteriosus and pulmonary hypertension. At one month of age she underwent closure of the patent ductus arteriosus and FloWatch implantation around the pulmonary artery through conventional left thoracotomy. The surgical procedure was rapid and uneventful. During the entire postoperative period bedside adjustments (narrowing or release of pulmonary artery banding with echocardiographic assessment) were repeatedly required to maintain an adequate pressure gradient. The early clinical results demonstrated the clinical benefits of unlimited external telemetric adjustments. The next step will be a multi-centre clinical trial to confirm the early results and adapt therapeutic strategies to this promising technology.
Resumo:
RESUME L'homéostasie du tissu cutané est assurée par des interactions étroites entre les cellules le composant et par l'équilibre entre la différenciation et la prolifération des kératinocytes devant permettre un renouvellement constant du tissu. Après une blessure, les kératinocytes environnant la zone blessée sont activés par des cytokines. Ils acquièrent alors un phénotype migratoire qui s'accompagne d'une modulation de l'activité protéolytique de la matrice extra cellulaire, d'une modulation de la dynamique du cytosquelette d'active, de la polarisation de la cellule, de l'affaiblissement des contacts entre cellules et de changements dans leurs contacts avec la matrice extra cellulaire. PPARβ est un facteur de transcription activé par les acides gras et leurs dérivés. Il appartient à la famille des récepteurs nucléaires aux hormones et son expression est avérée dans les kératinocytes des follicules pileux et dans les kératinocytes inter-folliculaires activés par la blessure cutanée. Le rôle de PPARβ dans la peau est principalement lié à son effet protecteur contre l'apoptose ainsi qu'à son implication dans l'équilibre dynamique entre la prolifération et la différentiation des kératinocytes. L'objet de ce travail fut de déterminer le rôle de PPARβ dans les processus d'adhésion et de migration des kératinocytes activés durant la régénération de l'épithélium blessé. Nous avons montré que les souris dépourvues du gène codant pour PPARβ ont de sévères imperfections affectant la morphologie de l'épithélium. Ce phénotype est corrélé à la modulation imparfaite du réseau d'active chez les souris dépourvues de PPARβ, à un défaut de localisation de l'intégrine α3 impliquée dans les complexes induisant la migration cellulaire, ainsi qu'à la modulation de l'expression d'acteurs majeurs affectant l'activité protéolytique de la matrice extra cellulaire. En conclusion, nos résultats montrent que PPARβ est impliqué dans le contrôle de la dynamique du cytosquelette d'active et la polarisation des kératinocytes activés. PPARβ étant impliqué dans l'acquisition d'un phénotype migratoire, il est légitime de se demander s'il intervient de même dans d'autres types cellulaires, par exemple dans la transition épithéliale-mésenchymateuse durant le développement, ou encore la progression de cellules tumorales. SUMMARY Highly coordinated intercellular interactions and single cell metabolism ensure cell and tissue maintenance of the skin. Healing of a skin wound involves keratinocyte activation by cytokines and growth factors. Activated keratinocytes acquire a motile phenotype that requires extracellular matrix remodeling and subsequent ligand activation through proteolytic activity, as well as cytoskeletal reorganisation induced by the release of cell-cell junctions and by the signalling relayed via integrin receptors and their cytoplasmic adaptors. PPARβ is a transcription factor activated by polyunsaturated fatty acids and fatty acid derivatives which belong to the nuclear hormone receptor superfamily. It is expressed in activated keratinocytes where it plays an essential role in protecting them from apoptosis. In addition, it plays an important function in hair follicle morphogenesis at the time of elongation, via the regulation of the balance between keratinocyte differentiation and proliferation. The aim of the present work was to determine if PPARβ is also involved in the regulation of migration and adhesion properties of keratinocytes during skin wound healing. We have shown that wounded PPARβ null mice display severe abnormalities of the keratinocyte migratory layer as shown at the histological level and using three-dimensional reconstruction. This altered migratory phenotype is correlated to altered dynamic of the actin cytoskeleton network, impaired α3 integrin localisation in migrating keratinocytes and changes in the expression of a key actor involved in extracellular matrix proteolytic activity. These results show that PPARβ is implicated in the fine tuning of the actin network organisation and the polarisation of activated keratinocytes following an epithelial wound. Whether these mechanisms are also controlled by PPARβ in other cell types during epithelial mesenchymal transition or tumour cell progression is an interesting question to rise.
Resumo:
Adrenal chromaffin cells synthesize and secrete catecholamines and neuropeptides that may regulate hormonal and paracrine signaling in stress and also during inflammation. The aim of our work was to study the role of the cytokine interleukin-1beta (IL-1beta) on catecholamine release and synthesis from primary cell cultures of human adrenal chromaffin cells. The effect of IL-1beta on neuropeptide Y (NPY) release and the intracellular pathways involved in catecholamine release evoked by IL-1beta and NPY were also investigated. We observed that IL-1beta increases the release of NPY, norepinephrine (NE), and epinephrine (EP) from human chromaffin cells. Moreover, the immunoneutralization of released NPY inhibits catecholamine release evoked by IL-1beta. Moreover, IL-1beta regulates catecholamine synthesis as the inhibition of tyrosine hydroxylase decreases IL-1beta-evoked catecholamine release and the cytokine induces tyrosine hydroxylase Ser40 phosphorylation. Moreover, IL-1beta induces catecholamine release by a mitogen-activated protein kinase (MAPK)-dependent mechanism, and by nitric oxide synthase activation. Furthermore, MAPK, protein kinase C (PKC), protein kinase A (PKA), and nitric oxide (NO) production are involved in catecholamine release evoked by NPY. Using human chromaffin cells, our data suggest that IL-1beta, NPY, and nitric oxide (NO) may contribute to a regulatory loop between the immune and the adrenal systems, and this is relevant in pathological conditions such as infection, trauma, stress, or in hypertension.
Resumo:
In recent years, elevated arsenic concentrations have been found in waters and soils of many, countries, often resulting in a health threat for the local population. Switzerland is not an exception and this paper deals with the release and subsequent fate of arsenic in a 200-km(2) mountainous watershed, characterized by crystalline silicate rocks (gneisses, schists, amphibolites) that contain abundant As-bearing sulfide ore deposits, some of which have been mined for iron and gold in the past. Using analytical methods common for mineralogical, ground water and soil studies (XRD, XRF, XAS-XANES and -EXAFS, electron microprobe, extraction, ICP, AAS with hydride generator, ion chromatography), seven different field situations and related dispersion processes of natural arsenic have been studied: (1) release by rock weathering, (2) transport and deposition by water and ice; (3) release of As to the ground and surface water due to increasing pH; (4) accumulation in humic soil horizons; (5) remobilization by reduction in water-saturated soils and stagnant ground waters; (6) remobilization by using P-rich fertilizers or dung and (7) oxidation, precipitation and dilution in surface waters. Comparison of the results with experimental adsorption studies and speciation diagrams from the literature allows us to reconstruct and identify the typical behavior of arsenic in a natural environment under temperate climatic conditions. The main parameters identified are: (a) once liberated from the primary minerals, sorption processes on Fe-oxy-hydroxides dominate over Al-phases, such as Al-hydroxides or clay minerals and limit the As concentrations in the spring and well waters between 20 and 300 mug/l. (b) Precipitation as secondary minerals is limited to the weathering domain, where the As concentrations are still high and not yet too diluted by rain and soils waters. (c) Although neutral and alkaline pH conditions clearly increase the mobility of As, the main factor to mobilize As is a low redox potential (Eh close or below 0 mV), which favors the dissolution of the Fe-oxy-hydroxides on which the As is sorbed. (d) X-ray absorption spectroscopy (XAS) of As in water-logged humic forest soils indicates that the reduction to As III only occurs at the solid-water interface and that the solid contains As as As V (e) A and Bh horizons of humic cambisols can effectively capture As when As-rich waters flow through them. Complex spatial and temporal variation of the various parameters in a watershed results in repeated mobilization and immobilization of As, which continuously transports As from the upper to the lower part of a watershed and ultimately to the ocean. (C) 2004 Elsevier B.V. All rights reserved.