65 resultados para control of uncertain nonlinear systems
Resumo:
In Pseudomonas aeruginosa, the small RNA-binding, regulatory protein RsmA is a negative control element in the formation of several extracellular products (e.g., pyocyanin, hydrogen cyanide, PA-IL lectin) as well as in the production of N-acylhomoserine lactone quorum-sensing signal molecules. RsmA was found to control positively the ability to swarm and to produce extracellular rhamnolipids and lipase, i.e., functions contributing to niche colonization by P. aeruginosa. An rsmA null mutant was entirely devoid of swarming but produced detectable amounts of rhamnolipids, suggesting that factors in addition to rhamnolipids influence the swarming ability of P. aeruginosa. A small regulatory RNA, rsmZ, which antagonized the effects of RsmA, was identified in P. aeruginosa. Expression of the rsmZ gene was dependent on both the global regulator GacA and RsmA, increased with cell density, and was subject to negative autoregulation. Overexpression of rsmZ and a null mutation in rsmA resulted in quantitatively similar, negative or positive effects on target genes, in agreement with a model that postulates titration of RsmA protein by RsmZ RNA.
Resumo:
We have selectively inhibited Notch1 signaling in oligodendrocyte precursors (OPCs) using the Cre/loxP system in transgenic mice to investigate the role of Notch1 in oligodendrocyte (OL) development and differentiation. Early development of OPCs appeared normal in the spinal cord. However, at embryonic day 17.5, premature OL differentiation was observed and ectopic immature OLs were present in the gray matter. At birth, OL apoptosis was strongly increased in Notch1 mutant animals. Premature OL differentiation was also observed in the cerebrum, indicating that Notch1 is required for the correct spatial and temporal regulation of OL differentiation in various regions of the central nervous system. These findings establish a widespread function of Notch1 in the late steps of mammalian OPC development in vivo.
Resumo:
SUMMARYIntercellular communication is achieved at specialized regions of the plasma membrane by gap junctions. The proteins constituting the gap junctions are called connexins and are encoded by a family of genes highly conserved during evolution. In adult mouse, four connexins (Cxs) are known to be expressed in the vasculature: Cx37, Cx40, Cx43 and Cx45. Several recent studies have provided evidences that vascular connexins expression and blood pressure regulation are closely linked, suggesting a role for connexins in the control of blood pressure. However, the precise function that each vascular connexin plays under physiological and pathophysiological conditions is still not elucidated. In this context, this work was dedicated to evaluate the contribution of each of the four vascular connexins in the control of the vascular function and in the blood pressure regulation.In the present work, we first demonstrated that vascular connexins are differently regulated by hypertension in the mouse aorta. We also observed that endothelial connexins play a regulatory role on eNOS expression levels and function in the aorta, therefore in the control of vascular tone. Then, we demonstrated that Cx40 plays a pivotal role in the kidney by regulating the renal levels of COX-2 and nNOS, two key enzymes of the macula densa known to participate in the control of renin secreting cells. We also found that Cx43 forms the functional gap junction involved in intercellular Ca2+ wave propagation between vascular smooth muscle cells. Finally, we have started to generate transgenic mice expressing specifically Cx40 in the endothelium to investigate the involvement of Cx40 in the vasomotor tone, or in the renin secreting cells to evaluate the role of Cx40 in the control of renin secretion.In conclusion, this work has allowed us to identify new roles for connexins in the vasculature. Our results suggest that vascular connexins could be interesting targets for new therapies caring hypertension and vascular diseases.
Resumo:
Fibroblast growth factor (FGF) signaling is critical for a broad range of developmental processes. In 2003, Fibroblast growth factor receptor 1 (FGFR1) was discovered as a novel locus causing both forms of isolate GnRH Deficiency, Kallmann syndrome [KS with anosmia] and normosmic idiopathic hypogonadotropic hypogonadism [nIHH] eventually accounting for approximately 10% of gonadotropin-releasing hormone (GnRH) deficiency cases. Such cases are characterized by a broad spectrum of reproductive phenotypes from severe congenital forms of GnRH deficiency to reversal of HH. Additionally, the variable expressivity of both reproductive and non-reproductive phenotypes among patients and family members harboring the identical FGFR1 mutations has pointed to a more complex, oligogenic model for GnRH deficiency. Further, reversal of HH in patients carrying FGFR1 mutations suggests potential gene-environment interactions in human GnRH deficiency disorders.
Resumo:
Diabetes develops when the insulin needs of peripheral cells exceed the availability or action of the hormone. This situation results from the death of most beta-cells in type 1 diabetes, and from an inability of the beta-cell mass to adapt to increasing insulin needs in type 2 and gestational diabetes. We analyzed several lines of transgenic mice and showed that connexins (Cxs), the transmembrane proteins that form gap junctions, are implicated in the modulation of the beta-cell mass. Specifically, we found that the native Cx36 does not alter islet size or insulin content, whereas the Cx43 isoform increases both parameters, and Cx32 has a similar effect only when combined with GH. These findings open interesting perspectives for the in vitro and in vivo regulation of the beta-cell mass.
Resumo:
OBJECTIVE The risk of carrying methicillin-resistant Staphylococcus aureus (MRSA) is higher among nursing home (NH) residents than in the general population. However, control strategies are not clearly defined in this setting. In this study, we compared the impact of standard precautions either alone (control) or combined with screening of residents and decolonization of carriers (intervention) to control MRSA in NHs. DESIGN Cluster randomized controlled trial SETTING NHs of the state of Vaud, Switzerland PARTICIPANTS Of 157 total NHs in Vaud, 104 (67%) participated in the study. INTERVENTION Standard precautions were enforced in all participating NHs, and residents underwent MRSA screening at baseline and 12 months thereafter. All carriers identified in intervention NHs, either at study entry or among newly admitted residents, underwent topical decolonization combined with environmental disinfection, except in cases of MRSA infection, MRSA bacteriuria, or deep skin ulcers. RESULTS NHs were randomly allocated to a control group (51 NHs, 2,412 residents) or an intervention group (53 NHs, 2,338 residents). Characteristics of NHs and residents were similar in both groups. The mean screening rates were 86% (range, 27%-100%) in control NHs and 87% (20%-100%) in intervention NHs. Prevalence of MRSA carriage averaged 8.9% in both control NHs (range, 0%-43%) and intervention NHs (range, 0%-38%) at baseline, and this rate significantly declined to 6.6% in control NHs and to 5.8% in intervention NHs after 12 months. However, the decline did not differ between groups (P=.66). CONCLUSION Universal screening followed by decolonization of carriers did not significantly reduce the prevalence of the MRSA carriage rate at 1 year compared with standard precautions
Resumo:
BACKGROUND: Screening tests for subclinical cardiovascular disease, such as markers of atherosclerosis, are increasingly used in clinical prevention to identify individuals at high cardiovascular risk. Being aware of these test results might also enhance patient motivation to change unhealthy behaviors but the effectiveness of such a screening strategy has been poorly studied. METHODS: The CAROtid plaque Screening trial on Smoking cessation (CAROSS) is a randomized controlled trial in 530 regular smokers aged 40-70 years to test the hypothesis that carotid plaque screening will influence smokers' behavior with an increased rate of smoking cessation (primary outcome) and an improved control of other cardiovascular risk factors (secondary outcomes) after 1-year follow-up. All smokers will receive a brief advice for smoking cessation,and will subsequently be randomly assigned to either the intervention group (with plaques screening) or the control group (without plaque screening). Carotid ultrasound will be conducted with a standard protocol. Smokers with at least one carotid plaque will receive pictures of their own plaques with a structured explanation on the general significance of plaques. To ensure equal contact conditions, smokers not undergoing ultrasound and those without plaque will receive a relevant explanation on the risks associated with tobacco smoking. Study outcomes will be compared between smokers randomized to plaque screening and smokers not submitted to plaque screening. SUMMARY: This will be the first trial to assess the impact of carotid plaque screening on 1-year smoking cessation rates and levels of control of other cardiovascular risk factors.
Resumo:
BACKGROUND: This study is aimed to assess the prevalence of awareness, treatment and control of high blood pressure (HBP) and associated factors in a Swiss city. DESIGN: Population-based cross-sectional study of 6182 participants (52.5% women) aged 35-75 years living in Lausanne, Switzerland. METHODS: HBP was defined as blood pressure >/=140/90 mmHg or current antihypertensive medication. RESULTS: The overall prevalence of HBP was 36% (95% confidence interval: 35-38%). Among participants with HBP, 63% were aware of it. Among participants aware of HBP, 78% were treated, and among those treated, 48% were controlled (BP <140/90 mmHg). In multivariate analysis, HBP prevalence was associated with older age, male sex, low educational level, high alcohol intake, awareness of diabetes or dyslipidaemia, obesity and parental history of myocardial infarction. HBP awareness was associated with older age, female sex, awareness of diabetes or dyslipidaemia, obesity and parental history of myocardial infarction. HBP control was associated with younger age, higher educational level and no alcohol intake. Alone or in combination, sartans were the most often prescribed antihypertensive medication category (41%), followed by diuretics, beta-blockers, angiotensin converting enzyme inhibitors and calcium channel blockers. Only 31% of participants treated for HBP were taking >/=2 antihypertensive medications. CONCLUSION: Although more than half of all participants with HBP were aware and more than three-quarters of them received a pharmacological treatment, less than half of those treated were adequately controlled.
Resumo:
Oncogenesis is closely linked to abnormalities in cell differentiation. Notch signaling provides an important form of intercellular communication involved in cell fate determination, stem cell potential and differentiation. Here we review the role of this pathway in the integrated growth/differentiation control of the keratinocyte cell type, and the maintenance of normal skin homeostasis. In parallel with the pro-differentiation function of Notch1 in keratinocytes, we discuss recent evidence pointing to a tumor suppressor function of this gene in both mouse skin and human cervical carcinogenesis. The possibility that Notch signaling elicits signals with a duality of growth positive and negative function will be discussed.
Resumo:
The global response regulator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the quorum sensing signal molecule N-butanoyl-homoserine-lactone (C4-HSL) and hence the synthesis of several C4-HSL-dependent virulence factors, including hydrogen cyanide (HCN). This study presents evidence that GacA positively influences the transcription of the rhlI gene, specifying C4-HSL synthase, explaining the quorum sensing-dependent transcriptional control of the HCN biosynthetic genes (hcnABC). In addition, GacA was found to modulate hcn gene expression positively at a post-transcriptional level involving the hcnA ribosome-binding site. Thus, the activating effect of GacA on cyanogenesis results from both transcriptional and post-transcriptional mechanisms.
Resumo:
Epithelial-mesenchymal interactions are key to skin morphogenesis and homeostasis. We report that maintenance of the hair follicle keratinocyte cell fate is defective in mice with mesenchymal deletion of the CSL/RBP-Jkappa gene, the effector of "canonical" Notch signaling. Hair follicle reconstitution assays demonstrate that this can be attributed to an intrinsic defect of dermal papilla cells. Similar consequences on hair follicle differentiation result from deletion of Wnt5a, a specific dermal papilla signature gene that we found to be under direct Notch/CSL control in these cells. Functional rescue experiments establish Wnt5a as an essential downstream mediator of Notch-CSL signaling, impinging on expression in the keratinocyte compartment of FoxN1, a gene with a key hair follicle regulatory function. Thus, Notch/CSL signaling plays a unique function in control of hair follicle differentiation by the underlying mesenchyme, with Wnt5a signaling and FoxN1 as mediators.
Resumo:
Rho GTPases integrate control of cell structure and adhesion with downstream signaling events. In keratinocytes, RhoA is activated at early times of differentiation and plays an essential function in establishment of cell-cell adhesion. We report here that, surprisingly, Rho signaling suppresses downstream gene expression events associated with differentiation. Similar inhibitory effects are exerted by a specific Rho effector, CRIK (Citron kinase), which is selectively down-modulated with differentiation, thereby allowing the normal process to occur. The suppressing function of Rho/CRIK on differentiation is associated with induction of KyoT1/2, a LIM domain protein gene implicated in integrin-mediated processes and/or Notch signaling. Like activated Rho and CRIK, elevated KyoT1/2 expression suppresses differentiation. Thus, Rho signaling exerts an unexpectedly complex role in keratinocyte differentiation, which is coupled with induction of KyoT1/2, a LIM domain protein gene with a potentially important role in control of cell self renewal.