340 resultados para common exposure
Resumo:
We sought to provide a contemporary picture of the presentation, etiology, and outcome of infective endocarditis (IE) in a large patient cohort from multiple locations worldwide. Prospective cohort study of 2781 adults with definite IE who were admitted to 58 hospitals in 25 countries from June 1, 2000, through September 1, 2005. The median age of the cohort was 57.9 (interquartile range, 43.2-71.8) years, and 72.1% had native valve IE. Most patients (77.0%) presented early in the disease (<30 days) with few of the classic clinical hallmarks of IE. Recent health care exposure was found in one-quarter of patients. Staphylococcus aureus was the most common pathogen (31.2%). The mitral (41.1%) and aortic (37.6%) valves were infected most commonly. The following complications were common: stroke (16.9%), embolization other than stroke (22.6%), heart failure (32.3%), and intracardiac abscess (14.4%). Surgical therapy was common (48.2%), and in-hospital mortality remained high (17.7%). Prosthetic valve involvement (odds ratio, 1.47; 95% confidence interval, 1.13-1.90), increasing age (1.30; 1.17-1.46 per 10-year interval), pulmonary edema (1.79; 1.39-2.30), S aureus infection (1.54; 1.14-2.08), coagulase-negative staphylococcal infection (1.50; 1.07-2.10), mitral valve vegetation (1.34; 1.06-1.68), and paravalvular complications (2.25; 1.64-3.09) were associated with an increased risk of in-hospital death, whereas viridans streptococcal infection (0.52; 0.33-0.81) and surgery (0.61; 0.44-0.83) were associated with a decreased risk. In the early 21st century, IE is more often an acute disease, characterized by a high rate of S aureus infection. Mortality remains relatively high.
Resumo:
Excessive exposure to solar ultraviolet (UV) is the main cause of skin cancer. Specific prevention should be further developed to target overexposed or highly vulnerable populations. A better characterisation of anatomical UV exposure patterns is however needed for specific prevention. To develop a regression model for predicting the UV exposure ratio (ER, ratio between the anatomical dose and the corresponding ground level dose) for each body site without requiring individual measurements. A 3D numeric model (SimUVEx) was used to compute ER for various body sites and postures. A multiple fractional polynomial regression analysis was performed to identify predictors of ER. The regression model used simulation data and its performance was tested on an independent data set. Two input variables were sufficient to explain ER: the cosine of the maximal daily solar zenith angle and the fraction of the sky visible from the body site. The regression model was in good agreement with the simulated data ER (R(2)=0.988). Relative errors up to +20% and -10% were found in daily doses predictions, whereas an average relative error of only 2.4% (-0.03% to 5.4%) was found in yearly dose predictions. The regression model predicts accurately ER and UV doses on the basis of readily available data such as global UV erythemal irradiance measured at ground surface stations or inferred from satellite information. It renders the development of exposure data on a wide temporal and geographical scale possible and opens broad perspectives for epidemiological studies and skin cancer prevention.
Resumo:
? Arbuscular mycorrhizal fungi colonize the roots of most monocotyledons and dicotyledons despite their different root architecture and cell patterning. Among the cereal hosts of arbuscular mycorrhizal fungi, Oryza sativa (rice) possesses a peculiar root system composed of three different types of roots: crown roots; large lateral roots; and fine lateral roots. Characteristic is the constitutive formation of aerenchyma in crown roots and large lateral roots and the absence of cortex from fine lateral roots. Here, we assessed the distribution of colonization by Glomus intraradices within this root system and determined its effect on root system architecture. ? Large lateral roots are preferentially colonized, and fine lateral roots are immune to arbuscular mycorrhizal colonization. Fungal preference for large lateral roots also occurred in sym mutants that block colonization of the root beyond rhizodermal penetration. ? Initiation of large lateral roots is significantly induced by G. intraradices colonization and does not require a functional common symbiosis signaling pathway from which some components are known to be needed for symbiosis-mediated lateral root induction in Medicago truncatula. ? Our results suggest variation of symbiotic properties among the different rice root-types and induction of the preferred tissue by arbuscular mycorrhizal fungi. Furthermore, signaling for arbuscular mycorrhizal-elicited alterations of the root system differs between rice and M. truncatula.
Resumo:
In cognition, common factors play a crucial role. For example, different types of intelligence are highly correlated, pointing to a common factor, which is often called g. One might expect that a similar common factor would also exist for vision. Surprisingly, no one in the field has addressed this issue. Here, we provide the first evidence that there is no common factor for vision. We tested 40 healthy students' performance in six basic visual paradigms: visual acuity, vernier discrimination, two visual backward masking paradigms, Gabor detection, and bisection discrimination. One might expect that performance levels on these tasks would be highly correlated because some individuals generally have better vision than others due to superior optics, better retinal or cortical processing, or enriched visual experience. However, only four out of 15 correlations were significant, two of which were nontrivial. These results cannot be explained by high intraobserver variability or ceiling effects because test-retest reliability was high and the variance in our student population is commensurate with that from other studies with well-sighted populations. Using a variety of tests (e.g., principal components analysis, Bayes theorem, test-retest reliability), we show the robustness of our null results. We suggest that neuroplasticity operates during everyday experience to generate marked individual differences. Our results apply only to the normally sighted population (i.e., restricted range sampling). For the entire population, including those with degenerate vision, we expect different results.
Resumo:
Objectives: Several population pharmacokinetic (PPK) and pharmacokinetic-pharmacodynamic (PK-PD) analyses have been performed with the anticancer drug imatinib. Inspired by the approach of meta-analysis, we aimed to compare and combine results from published studies in a useful way - in particular for improving the clinical interpretation of imatinib concentration measurements in the scope of therapeutic drug monitoring (TDM). Methods: Original PPK analyses and PK-PD studies (PK surrogate: trough concentration Cmin; PD outcomes: optimal early response and specific adverse events) were searched systematically on MEDLINE. From each identified PPK model, a predicted concentration distribution under standard dosage was derived through 1000 simulations (NONMEM), after standardizing model parameters to common covariates. A "reference range" was calculated from pooled simulated concentrations in a semi-quantitative approach (without specific weighting) over the whole dosing interval. Meta-regression summarized relationships between Cmin and optimal/suboptimal early treatment response. Results: 9 PPK models and 6 relevant PK-PD reports in CML patients were identified. Model-based predicted median Cmin ranged from 555 to 1388 ng/ml (grand median: 870 ng/ml and inter-quartile range: 520-1390 ng/ml). The probability to achieve optimal early response was predicted to increase from 60 to 85% from 520 to 1390 ng/ml across PK-PD studies (odds ratio for doubling Cmin: 2.7). Reporting of specific adverse events was too heterogeneous to perform a regression analysis. The general frequency of anemia, rash and fluid retention increased however consistently with Cmin, but less than response probability. Conclusions: Predicted drug exposure may differ substantially between various PPK analyses. In this review, heterogeneity was mainly attributed to 2 "outlying" models. The established reference range seems to cover the range where both good efficacy and acceptable tolerance are expected for most patients. TDM guided dose adjustment appears therefore justified for imatinib in CML patients. Its usefulness remains now to be prospectively validated in a randomized trial.
Resumo:
The number of pregnant women receiving immunosuppressants for anti-rejection therapy or autoimmune diseases is increasing. All immunosuppressive drugs cross the placenta, raising questions about the long-term outcome of the children exposed in utero. There is no higher risk of congenital anomalies. However, an increased incidence of prematurity, intrauterine growth retardation (IUGR) and generally low birth weight has been reported, as well as maternal hypertension and preeclampsia. The most frequent neonatal complications are those associated with prematurity and IUGR, as well as adrenal insufficiency with corticosteroids, immunological disturbances with azathioprine and cyclosporine, and hyperkalemia with tacrolimus. The long-term follow-up of infants exposed to immunosuppressants in utero is still limited and experimental studies raise the question whether there could be an increased incidence at adult age of some pathologies including renal insufficiency, hypertension and diabetes.
Resumo:
Résumé: L'évaluation de l'exposition aux nuisances professionnelles représente une étape importante dans l'analyse de poste de travail. Les mesures directes sont rarement utilisées sur les lieux même du travail et l'exposition est souvent estimée sur base de jugements d'experts. Il y a donc un besoin important de développer des outils simples et transparents, qui puissent aider les spécialistes en hygiène industrielle dans leur prise de décision quant aux niveaux d'exposition. L'objectif de cette recherche est de développer et d'améliorer les outils de modélisation destinés à prévoir l'exposition. Dans un premier temps, une enquête a été entreprise en Suisse parmi les hygiénistes du travail afin d'identifier les besoins (types des résultats, de modèles et de paramètres observables potentiels). Il a été constaté que les modèles d'exposition ne sont guère employés dans la pratique en Suisse, l'exposition étant principalement estimée sur la base de l'expérience de l'expert. De plus, l'émissions de polluants ainsi que leur dispersion autour de la source ont été considérés comme des paramètres fondamentaux. Pour tester la flexibilité et la précision des modèles d'exposition classiques, des expériences de modélisations ont été effectuées dans des situations concrètes. En particulier, des modèles prédictifs ont été utilisés pour évaluer l'exposition professionnelle au monoxyde de carbone et la comparer aux niveaux d'exposition répertoriés dans la littérature pour des situations similaires. De même, l'exposition aux sprays imperméabilisants a été appréciée dans le contexte d'une étude épidémiologique sur une cohorte suisse. Dans ce cas, certains expériences ont été entreprises pour caractériser le taux de d'émission des sprays imperméabilisants. Ensuite un modèle classique à deux-zone a été employé pour évaluer la dispersion d'aérosol dans le champ proche et lointain pendant l'activité de sprayage. D'autres expériences ont également été effectuées pour acquérir une meilleure compréhension des processus d'émission et de dispersion d'un traceur, en se concentrant sur la caractérisation de l'exposition du champ proche. Un design expérimental a été développé pour effectuer des mesures simultanées dans plusieurs points d'une cabine d'exposition, par des instruments à lecture directe. Il a été constaté que d'un point de vue statistique, la théorie basée sur les compartiments est sensée, bien que l'attribution à un compartiment donné ne pourrait pas se faire sur la base des simples considérations géométriques. Dans une étape suivante, des données expérimentales ont été collectées sur la base des observations faites dans environ 100 lieux de travail différents: des informations sur les déterminants observés ont été associées aux mesures d'exposition des informations sur les déterminants observés ont été associé. Ces différentes données ont été employées pour améliorer le modèle d'exposition à deux zones. Un outil a donc été développé pour inclure des déterminants spécifiques dans le choix du compartiment, renforçant ainsi la fiabilité des prévisions. Toutes ces investigations ont servi à améliorer notre compréhension des outils des modélisations ainsi que leurs limitations. L'intégration de déterminants mieux adaptés aux besoins des experts devrait les inciter à employer cet outil dans leur pratique. D'ailleurs, en augmentant la qualité des outils des modélisations, cette recherche permettra non seulement d'encourager leur utilisation systématique, mais elle pourra également améliorer l'évaluation de l'exposition basée sur les jugements d'experts et, par conséquent, la protection de la santé des travailleurs. Abstract Occupational exposure assessment is an important stage in the management of chemical exposures. Few direct measurements are carried out in workplaces, and exposures are often estimated based on expert judgements. There is therefore a major requirement for simple transparent tools to help occupational health specialists to define exposure levels. The aim of the present research is to develop and improve modelling tools in order to predict exposure levels. In a first step a survey was made among professionals to define their expectations about modelling tools (what types of results, models and potential observable parameters). It was found that models are rarely used in Switzerland and that exposures are mainly estimated from past experiences of the expert. Moreover chemical emissions and their dispersion near the source have also been considered as key parameters. Experimental and modelling studies were also performed in some specific cases in order to test the flexibility and drawbacks of existing tools. In particular, models were applied to assess professional exposure to CO for different situations and compared with the exposure levels found in the literature for similar situations. Further, exposure to waterproofing sprays was studied as part of an epidemiological study on a Swiss cohort. In this case, some laboratory investigation have been undertaken to characterize the waterproofing overspray emission rate. A classical two-zone model was used to assess the aerosol dispersion in the near and far field during spraying. Experiments were also carried out to better understand the processes of emission and dispersion for tracer compounds, focusing on the characterization of near field exposure. An experimental set-up has been developed to perform simultaneous measurements through direct reading instruments in several points. It was mainly found that from a statistical point of view, the compartmental theory makes sense but the attribution to a given compartment could ñó~be done by simple geometric consideration. In a further step the experimental data were completed by observations made in about 100 different workplaces, including exposure measurements and observation of predefined determinants. The various data obtained have been used to improve an existing twocompartment exposure model. A tool was developed to include specific determinants in the choice of the compartment, thus largely improving the reliability of the predictions. All these investigations helped improving our understanding of modelling tools and identify their limitations. The integration of more accessible determinants, which are in accordance with experts needs, may indeed enhance model application for field practice. Moreover, while increasing the quality of modelling tool, this research will not only encourage their systematic use, but might also improve the conditions in which the expert judgments take place, and therefore the workers `health protection.
Resumo:
The dose-dependent toxicity of the main psychoactive component of cannabis in brain regions rich in cannabinoid CB1 receptors is well known in animal studies. However, research in humans does not show common findings across studies regarding the brain regions that are affected after long-term exposure to cannabis. In the present study, we investigate (using Voxel-based Morphometry) gray matter changes in a group of regular cannabis smokers in comparison with a group of occasional smokers matched by the years of cannabis use. We provide evidence that regular cannabis use is associated with gray matter volume reduction in the medial temporal cortex, temporal pole, parahippocampal gyrus, insula, and orbitofrontal cortex; these regions are rich in cannabinoid CB1 receptors and functionally associated with motivational, emotional, and affective processing. Furthermore, these changes correlate with the frequency of cannabis use in the 3 months before inclusion in the study. The age of onset of drug use also influences the magnitude of these changes. Significant gray matter volume reduction could result either from heavy consumption unrelated to the age of onset or instead from recreational cannabis use initiated at an adolescent age. In contrast, the larger gray matter volume detected in the cerebellum of regular smokers without any correlation with the monthly consumption of cannabis may be related to developmental (ontogenic) processes that occur in adolescence.
Resumo:
The common acute lymphoblastic leukemia antigen (CALLA) has been detected in biological fluids using a radioimmunoassay based on the inhibition of binding of 125I-labeled monoclonal anti-CALLA antibody to glutaraldehyde-fixed NALM-1 cells. With this assay, we showed first that CALLA was released in culture fluids from NALM-1 and Daudi cell lines but was absent from culture fluids from CALLA negative cell lines. Then, we found that the sera of 34 out of 42 patients (81%) with untreated common acute lymphoblastic leukemia (c-ALL) contained higher CALLA levels than any of the 42 serum samples from healthy controls. The specificity of these results was further demonstrated by testing in parallel the sera from 48 patients with CALLA negative leukemias, including 26 acute myeloid leukemia (AML), 12 T-cell acute lymphoblastic leukemia (T-ALL), and 10 acute undifferentiated leukemia (AUL). All of these sera gave negative results, except for one patient with AUL, who had a significantly elevated circulating CALLA level, and one patient with AML, who had a borderline CALLA level, 3 SD over the mean of the normal sera. Preliminary results suggest that circulating CALLA is associated with membrane fragments or vesicles, since the total CALLA antigenic activity was recovered in the pellet of the serum samples centrifuged at 100,000 g. In addition, the CALLA-positive pellets contained an enzyme considered as a membrane marker, 5'-nucleotidase. Evaluation of the clinical importance of repeated serum CALLA determinations for the monitoring of c-ALL patients deserves further investigation.
Multimodel inference and multimodel averaging in empirical modeling of occupational exposure levels.
Resumo:
Empirical modeling of exposure levels has been popular for identifying exposure determinants in occupational hygiene. Traditional data-driven methods used to choose a model on which to base inferences have typically not accounted for the uncertainty linked to the process of selecting the final model. Several new approaches propose making statistical inferences from a set of plausible models rather than from a single model regarded as 'best'. This paper introduces the multimodel averaging approach described in the monograph by Burnham and Anderson. In their approach, a set of plausible models are defined a priori by taking into account the sample size and previous knowledge of variables influent on exposure levels. The Akaike information criterion is then calculated to evaluate the relative support of the data for each model, expressed as Akaike weight, to be interpreted as the probability of the model being the best approximating model given the model set. The model weights can then be used to rank models, quantify the evidence favoring one over another, perform multimodel prediction, estimate the relative influence of the potential predictors and estimate multimodel-averaged effects of determinants. The whole approach is illustrated with the analysis of a data set of 1500 volatile organic compound exposure levels collected by the Institute for work and health (Lausanne, Switzerland) over 20 years, each concentration having been divided by the relevant Swiss occupational exposure limit and log-transformed before analysis. Multimodel inference represents a promising procedure for modeling exposure levels that incorporates the notion that several models can be supported by the data and permits to evaluate to a certain extent model selection uncertainty, which is seldom mentioned in current practice.
Resumo:
PURPOSE: In Burkina Faso, gold ore is one of the main sources of income for an important part of the active population. Artisan gold miners use mercury in the extraction, a toxic metal whose human health risks are well known. The aim of the present study was to assess mercury exposure as well as to understand the exposure determinants of gold miners in Burkinabe small-scale mines.METHODS: The examined gold miners' population on the different selected gold mining sites was composed by persons who were directly and indirectly related to gold mining activities. But measurement of urinary mercury was performed on workers most susceptible to be exposed to mercury. Thus, occupational exposure to mercury was evaluated among ninety-three workers belonging to eight different gold mining sites spread in six regions of Burkina Faso. Among others, work-related exposure determinants were taken into account for each person during urine sampling as for example amalgamating or heating mercury. All participants were medically examined by a local medical team in order to identify possible symptoms related to the toxic effect of mercury.RESULTS: Mercury levels were high, showing that 69% of the measurements exceeded the ACGIH (American Conference of Industrial Hygienists) biological exposure indice (BEI) of 35 µg per g of creatinine (µg/g-Cr) (prior to shift) while 16% even exceeded 350 µg/g-Cr. Basically, unspecific but also specific symptoms related to mercury toxicity could be underlined among the persons who were directly related to gold mining activities. Only one-third among the studied subpopulation reported about less than three symptoms possibly associated to mercury exposure and nearly half of them suffered from at least five of these symptoms. Ore washers were more involved in the direct handling of mercury while gold dealers in the final gold recovery activities. These differences may explain the overexposure observed in gold dealers and indicate that the refining process is the major source of exposure.CONCLUSIONS: This study attests that mercury exposure still is an issue of concern. North-South collaborations should encourage knowledge exchange between developing and developed countries, for a cleaner artisanal gold mining process and thus for reducing human health and environmental hazards due to mercury use.
Resumo:
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-a and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-a concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure. [Authors]