44 resultados para classical integral transforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive fungal diseases (IFDs) continue to cause considerable morbidity and mortality in patients with haematological malignancy. Diagnosis of IFD is difficult, with the sensitivity of the gold standard tests (culture and histopathology) often reported to be low, which may at least in part be due to sub-optimal sampling or subsequent handling in the routine microbiological laboratory. Therefore, a working group of the European Conference in Infections in Leukaemia was convened in 2009 with the task of reviewing the classical diagnostic procedures and providing recommendations for their optimal use. The recommendations were presented and approved at the ECIL-3 conference in September 2009. Although new serological and molecular tests are examined in separate papers, this review focuses on sample types, microscopy and culture procedures, antifungal susceptibility testing and imaging. The performance and limitations of these procedures are discussed and recommendations are provided on when and how to use them and how to interpret the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of language has occupied a special place in the history of Indian thought. Indian philosophers give particular attention to the analysis of the cognition obtained from language, known under the generic name of śābdabodha. This term is used to denote, among other things, the cognition episode of the hearer, the content of which is described in the form of a paraphrase of a sentence represented as a hierarchical structure. Philosophers submit the meaning of the component items of a sentence and their relationship to a thorough examination, and represent the content of the resulting cognition as a paraphrase centred on a meaning element, that is taken as principal qualificand (mukhyaviśesya) which is qualified by the other meaning elements. This analysis is the object of continuous debate over a period of more than a thousand years between the philosophers of the schools of Mimāmsā, Nyāya (mainly in its Navya form) and Vyākarana. While these philosophers are in complete agreement on the idea that the cognition of sentence meaning has a hierarchical structure and share the concept of a single principal qualificand (qualified by other meaning elements), they strongly disagree on the question which meaning element has this role and by which morphological item it is expressed. This disagreement is the central point of their debate and gives rise to competing versions of this theory. The Mïmāmsakas argue that the principal qualificand is what they call bhāvanā ̒bringing into being̒, ̒efficient force̒ or ̒productive operation̒, expressed by the verbal affix, and distinct from the specific procedures signified by the verbal root; the Naiyāyikas generally take it to be the meaning of the word with the first case ending, while the Vaiyākaranas take it to be the operation expressed by the verbal root. All the participants rely on the Pāninian grammar, insofar as the Mimāmsakas and Naiyāyikas do not compose a new grammar of Sanskrit, but use different interpretive strategies in order to justify their views, that are often in overt contradiction with the interpretation of the Pāninian rules accepted by the Vaiyākaranas. In each of the three positions, weakness in one area is compensated by strength in another, and the cumulative force of the total argumentation shows that no position can be declared as correct or overall superior to the others. This book is an attempt to understand this debate, and to show that, to make full sense of the irreconcilable positions of the three schools, one must go beyond linguistic factors and consider the very beginnings of each school's concern with the issue under scrutiny. The texts, and particularly the late texts of each school present very complex versions of the theory, yet the key to understanding why these positions remain irreconcilable seems to lie elsewhere, this in spite of extensive argumentation involving a great deal of linguistic and logical technicalities. Historically, this theory arises in Mimāmsā (with Sabara and Kumārila), then in Nyāya (with Udayana), in a doctrinal and theological context, as a byproduct of the debate over Vedic authority. The Navya-Vaiyākaranas enter this debate last (with Bhattoji Dïksita and Kaunda Bhatta), with the declared aim of refuting the arguments of the Mïmāmsakas and Naiyāyikas by bringing to light the shortcomings in their understanding of Pāninian grammar. The central argument has focused on the capacity of the initial contexts, with the network of issues to which the principal qualificand theory is connected, to render intelligible the presuppositions and aims behind the complex linguistic justification of the classical and late stages of this debate. Reading the debate in this light not only reveals the rationality and internal coherence of each position beyond the linguistic arguments, but makes it possible to understand why the thinkers of the three schools have continued to hold on to three mutually exclusive positions. They are defending not only their version of the principal qualificand theory, but (though not openly acknowledged) the entire network of arguments, linguistic and/or extra-linguistic, to which this theory is connected, as well as the presuppositions and aims underlying these arguments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to molecular epidemiology theory, two isolates belong to the same chain of transmission if they are similar according to a highly discriminatory molecular typing method. This has been demonstrated in outbreaks, but is rarely studied in endemic situations. Person-to-person transmission cannot be established when isolates of meticillin-resistant Staphylococcus aureus (MRSA) belong to endemically predominant genotypes. By contrast, isolates of infrequent genotypes might be more suitable for epidemiological tracking. The objective of the present study was to determine, in newly identified patients harbouring non-predominant MRSA genotypes, whether putative epidemiological links inferred from molecular typing could replace classical epidemiology in the context of a regional surveillance programme. MRSA genotypes were defined using double-locus sequence typing (DLST) combining clfB and spa genes. A total of 1,268 non-repetitive MRSA isolates recovered between 2005 and 2006 in Western Switzerland were typed: 897 isolates (71%) belonged to four predominant genotypes, 231 (18%) to 55 non-predominant genotypes, and 140 (11%) were unique. Obvious epidemiological links were found in only 106/231 (46%) patients carrying isolates with non-predominant genotypes suggesting that molecular surveillance identified twice as many clusters as those that may have been suspected with classical epidemiological links. However, not all of these molecular clusters represented person-to-person transmission. Thus, molecular typing cannot replace classical epidemiology but is complementary. A prospective surveillance of MRSA genotypes could help to target epidemiological tracking in order to recognise new risk factors in hospital and community settings, or emergence of new epidemic clones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depuis le séminaire H. Cartan de 1954-55, il est bien connu que l'on peut trouver des éléments de torsion arbitrairement grande dans l'homologie entière des espaces d'Eilenberg-MacLane K(G,n) où G est un groupe abélien non trivial et n>1. L'objectif majeur de ce travail est d'étendre ce résultat à des H-espaces possédant plus d'un groupe d'homotopie non trivial. Dans le but de contrôler précisément le résultat de H. Cartan, on commence par étudier la dualité entre l'homologie et la cohomologie des espaces d'Eilenberg-MacLane 2-locaux de type fini. On parvient ainsi à raffiner quelques résultats qui découlent des calculs de H. Cartan. Le résultat principal de ce travail peut être formulé comme suit. Soit X un H-espace ne possédant que deux groupes d'homotopie non triviaux, tous deux finis et de 2-torsion. Alors X n'admet pas d'exposant pour son groupe gradué d'homologie entière réduite. On construit une large classe d'espaces pour laquelle ce résultat n'est qu'une conséquence d'une caractéristique topologique, à savoir l'existence d'un rétract faible X K(G,n) pour un certain groupe abélien G et n>1. On généralise également notre résultat principal à des espaces plus compliqués en utilisant la suite spectrale d'Eilenberg-Moore ainsi que des méthodes analytiques faisant apparaître les nombres de Betti et leur comportement asymptotique. Finalement, on conjecture que les espaces qui ne possédent qu'un nombre fini de groupes d'homotopie non triviaux n'admettent pas d'exposant homologique. Ce travail contient par ailleurs la présentation de la « machine d'Eilenberg-MacLane », un programme C++ conçu pour calculer explicitement les groupes d'homologie entière des espaces d'Eilenberg-MacLane. <br/><br/>By the work of H. Cartan, it is well known that one can find elements of arbitrarilly high torsion in the integral (co)homology groups of an Eilenberg-MacLane space K(G,n), where G is a non-trivial abelian group and n>1. The main goal of this work is to extend this result to H-spaces having more than one non-trivial homotopy groups. In order to have an accurate hold on H. Cartan's result, we start by studying the duality between homology and cohomology of 2-local Eilenberg-MacLane spaces of finite type. This leads us to some improvements of H. Cartan's methods in this particular case. Our main result can be stated as follows. Let X be an H-space with two non-vanishing finite 2-torsion homotopy groups. Then X does not admit any exponent for its reduced integral graded (co)homology group. We construct a wide class of examples for which this result is a simple consequence of a topological feature, namely the existence of a weak retract X K(G,n) for some abelian group G and n>1. We also generalize our main result to more complicated stable two stage Postnikov systems, using the Eilenberg-Moore spectral sequence and analytic methods involving Betti numbers and their asymptotic behaviour. Finally, we investigate some guesses on the non-existence of homology exponents for finite Postnikov towers. We conjecture that Postnikov pieces do not admit any (co)homology exponent. This work also includes the presentation of the "Eilenberg-MacLane machine", a C++ program designed to compute explicitely all integral homology groups of Eilenberg-MacLane spaces. <br/><br/>Il est toujours difficile pour un mathématicien de parler de son travail. La difficulté réside dans le fait que les objets qu'il étudie sont abstraits. On rencontre assez rarement un espace vectoriel, une catégorie abélienne ou une transformée de Laplace au coin de la rue ! Cependant, même si les objets mathématiques sont difficiles à cerner pour un non-mathématicien, les méthodes pour les étudier sont essentiellement les mêmes que celles utilisées dans les autres disciplines scientifiques. On décortique les objets complexes en composantes plus simples à étudier. On dresse la liste des propriétés des objets mathématiques, puis on les classe en formant des familles d'objets partageant un caractère commun. On cherche des façons différentes, mais équivalentes, de formuler un problème. Etc. Mon travail concerne le domaine mathématique de la topologie algébrique. Le but ultime de cette discipline est de parvenir à classifier tous les espaces topologiques en faisant usage de l'algèbre. Cette activité est comparable à celle d'un ornithologue (topologue) qui étudierait les oiseaux (les espaces topologiques) par exemple à l'aide de jumelles (l'algèbre). S'il voit un oiseau de petite taille, arboricole, chanteur et bâtisseur de nids, pourvu de pattes à quatre doigts, dont trois en avant et un, muni d'une forte griffe, en arrière, alors il en déduira à coup sûr que c'est un passereau. Il lui restera encore à déterminer si c'est un moineau, un merle ou un rossignol. Considérons ci-dessous quelques exemples d'espaces topologiques: a) un cube creux, b) une sphère et c) un tore creux (c.-à-d. une chambre à air). a) b) c) Si toute personne normalement constituée perçoit ici trois figures différentes, le topologue, lui, n'en voit que deux ! De son point de vue, le cube et la sphère ne sont pas différents puisque ils sont homéomorphes: on peut transformer l'un en l'autre de façon continue (il suffirait de souffler dans le cube pour obtenir la sphère). Par contre, la sphère et le tore ne sont pas homéomorphes: triturez la sphère de toutes les façons (sans la déchirer), jamais vous n'obtiendrez le tore. Il existe un infinité d'espaces topologiques et, contrairement à ce que l'on serait naïvement tenté de croire, déterminer si deux d'entre eux sont homéomorphes est très difficile en général. Pour essayer de résoudre ce problème, les topologues ont eu l'idée de faire intervenir l'algèbre dans leurs raisonnements. Ce fut la naissance de la théorie de l'homotopie. Il s'agit, suivant une recette bien particulière, d'associer à tout espace topologique une infinité de ce que les algébristes appellent des groupes. Les groupes ainsi obtenus sont appelés groupes d'homotopie de l'espace topologique. Les mathématiciens ont commencé par montrer que deux espaces topologiques qui sont homéomorphes (par exemple le cube et la sphère) ont les même groupes d'homotopie. On parle alors d'invariants (les groupes d'homotopie sont bien invariants relativement à des espaces topologiques qui sont homéomorphes). Par conséquent, deux espaces topologiques qui n'ont pas les mêmes groupes d'homotopie ne peuvent en aucun cas être homéomorphes. C'est là un excellent moyen de classer les espaces topologiques (pensez à l'ornithologue qui observe les pattes des oiseaux pour déterminer s'il a affaire à un passereau ou non). Mon travail porte sur les espaces topologiques qui n'ont qu'un nombre fini de groupes d'homotopie non nuls. De tels espaces sont appelés des tours de Postnikov finies. On y étudie leurs groupes de cohomologie entière, une autre famille d'invariants, à l'instar des groupes d'homotopie. On mesure d'une certaine manière la taille d'un groupe de cohomologie à l'aide de la notion d'exposant; ainsi, un groupe de cohomologie possédant un exposant est relativement petit. L'un des résultats principaux de ce travail porte sur une étude de la taille des groupes de cohomologie des tours de Postnikov finies. Il s'agit du théorème suivant: un H-espace topologique 1-connexe 2-local et de type fini qui ne possède qu'un ou deux groupes d'homotopie non nuls n'a pas d'exposant pour son groupe gradué de cohomologie entière réduite. S'il fallait interpréter qualitativement ce résultat, on pourrait dire que plus un espace est petit du point de vue de la cohomologie (c.-à-d. s'il possède un exposant cohomologique), plus il est intéressant du point de vue de l'homotopie (c.-à-d. il aura plus de deux groupes d'homotopie non nuls). Il ressort de mon travail que de tels espaces sont très intéressants dans le sens où ils peuvent avoir une infinité de groupes d'homotopie non nuls. Jean-Pierre Serre, médaillé Fields en 1954, a montré que toutes les sphères de dimension >1 ont une infinité de groupes d'homotopie non nuls. Des espaces avec un exposant cohomologique aux sphères, il n'y a qu'un pas à franchir...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autoantibodies against complement C1q (anti-C1q) strongly correlate with the occurrence of lupus nephritis and hypocomplementemia in systemic lupus erythematosus (SLE). Although a direct pathogenic role of anti-C1q has been suggested, the assumed complement-activating capacity remains to be elucidated. Using an ELISA-based assay, we found that anti-C1q activate the classical (CP) and lectin pathways (LP) depending on the anti-C1q immunoglobulin-class repertoire present in the patient's serum. IgG anti-C1q resulted in the activation of the CP as reflected by C4b deposition in the presence of purified C1 and C4 in a dose-dependent manner. The extent of C4b deposition correlated with anti-C1q levels in SLE patients but not in healthy controls. Our data indicate that SLE patient-derived anti-C1q can activate the CP and the LP but not the alternative pathway of complement. These findings are of importance for the understanding of the role of anti-C1q in SLE suggesting a direct link to hypocomplementemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.

Relevância:

20.00% 20.00%

Publicador: