410 resultados para cerebral artery
Resumo:
Background: To study the characteristics of vascular aphasia in a cohort of patients with a first-ever stroke. Methods: All patients admitted to the Lausanne neurology department for a first-ever stroke between 1979 and 2004 were included. Neurological examination including language was performed on admission. Stroke risk factors, stroke origin and location, associated symptoms and Rankin scale scores were recorded for each patient. The influence of these factors on aphasia frequency and subtypes was analyzed using logistic regression models. Results: 1,541 (26%) of patients included in this study had aphasia. The more frequent clinical presentations were expressive-receptive aphasia (38%) and mainly expressive aphasia (37%), whereas mainly receptive aphasia was less frequently observed (25%). In ischemic stroke, the frequency of aphasia increased with age (55% of nonaphasic vs. 61% of aphasic patients were more than 65 years old), female sex (40% of women in the nonaphasia group vs. 44% in the aphasia group) and risk factors for cardioembolic origin (coronary heart disease 20 vs. 26% and atrial fibrillation 15 vs. 24%). Stroke aphasia was more likely associated with superficial middle cerebral artery (MCA) stroke and leads to relevant disability. Clinical subtypes depended on stroke location and associated symptoms. Exceptions to the classic clinical-topographic correlations were not rare (26%). Finally, significant differences were found for patients with crossed aphasia in terms of stroke origin and aphasia subtypes. Conclusions: Risk factors for stroke aphasia are age, cardioembolic origin and superficial MCA stroke. Exceptions to classic clinical-topographic correlations are not rare. Stroke aphasia is associated with relevant disability. Stroke location and associated symptoms strongly influence aphasia subtypes.
Resumo:
Twelve patients with a catastrophic reaction (CR) (an outburst of frustration, depression, and anger when confronted with a task) were identified in a prospective cohort population (n = 326) with first-ever stroke admitted within 48 hours from onset. The authors' findings suggest that CR is a rare though not exceptional phenomenon in acute stroke and is associated with nonfluent aphasias and left opercular lesions. CR, poststroke depression, and emotionalism are distinct but related disorders.
Resumo:
OBJECTIVE: A study was undertaken to develop a score for assessing risk for symptomatic intracranial hemorrhage (sICH) in ischemic stroke patients treated with intravenous (IV) thrombolysis. METHODS: The derivation cohort comprised 974 ischemic stroke patients treated (1995-2008) with IV thrombolysis at the Helsinki University Central Hospital. The predictive value of parameters associated with sICH (European Cooperative Acute Stroke Study II) was evaluated, and we developed our score according to the magnitude of logistic regression coefficients. We calculated absolute risks and likelihood ratios of sICH per increasing score points. The score was validated in 828 patients from 3 Swiss cohorts (Lausanne, Basel, and Geneva). Performance of the score was tested with area under a receiver operating characteristic curve (AUC-ROC). RESULTS: Our SEDAN score (0 to 6 points) comprises baseline blood Sugar (glucose; 8.1-12.0 mmol/l [145-216 mg/dl] = 1; >12.0 mmol/l [>216 mg/dl] = 2), Early infarct signs (yes = 1) and (hyper)Dense cerebral artery sign (yes = 1) on admission computed tomography scan, Age (>75 years = 1), and NIH Stroke Scale on admission (≥10 = 1). Absolute risk for sICH in the derivation cohort was: 1.4%, 2.9%, 8.5%, 12.2%, 21.7%, and 33.3% for 0, 1, 2, 3, 4, and 5 score points, respectively. In the validation cohort, absolute risks were similar (1.0%, 3.5%, 5.1%, 9.2%, 16.9%, and 27.8%, respectively). AUC-ROC was 0.77 (0.71-0.83; p < 0.001). INTERPRETATION: Our SEDAN score reliably assessed risk for sICH in IV thrombolysis-treated patients with anterior- and posterior circulation ischemic stroke, and it can support clinical decision making in high-risk patients. External validation of the score supports its generalization.
Resumo:
INTRODUCTION: Patients with unknown stroke onset are generally excluded from acute recanalisation treatments. We designed a pilot study to assess feasibility of a trial of perfusion computed tomography (PCT)-guided thrombolysis in patients with ischemic tissue at risk of infarction and unknown stroke onset. METHODS: Patients with a supratentorial stroke of unknown onset in the middle cerebral artery territory and significant volume of at-risk tissue on PCT were randomized to intravenous thrombolysis with alteplase (0.9 mg/kg) or placebo. Feasibility endpoints were randomization and blinded treatment of patients within 2 h after hospital arrival, and the correct application (estimation) of the perfusion imaging criteria. RESULTS: At baseline, there was a trend towards older age [69.5 (57-78) vs. 49 (44-78) years] in the thrombolysis group (n = 6) compared to placebo (n = 6). Regarding feasibility, hospital arrival to treatment delay was above the allowed 2 h in three patients (25%). There were two protocol violations (17%) regarding PCT, both underestimating the predicted infarct in patients randomized in the placebo group. No symptomatic hemorrhage or death occurred during the first 7 days. Three of the four (75%) and one of the five (20%) patients were recanalized in the thrombolysis and placebo group respectively. The volume of non-infarcted at-risk tissue was 84 (44-206) cm(3) in the treatment arm and 29 (8-105) cm(3) in the placebo arm. CONCLUSIONS: This pilot study shows that a randomized PCT-guided thrombolysis trial in patients with stroke of unknown onset may be feasible if issues such as treatment delays and reliable identification of tissue at risk of infarction tissue are resolved. Safety and efficiency of such an approach need to be established.
Resumo:
Objectives: Magnetic resonance (MR) imaging and spectroscopy (MRS) allow the establishment of the anatomical evolution and neurochemical profiles of ischemic lesions. The aim of the present study was to identify markers of reversible and irreversible damage by comparing the effects of 10-mins middle cerebral artery occlusion (MCAO), mimicking a transient ischemic attack, with the effects of 30-mins MCAO, inducing a striatal lesion. Methods: ICR-CD1 mice were subjected to 10-mins (n = 11) or 30-mins (n = 9) endoluminal MCAO by filament technique at 0 h. The regional cerebral blood flow (CBF) was monitored in all animals by laser- Doppler flowmetry with a flexible probe fixed on the skull with < 20% of baseline CBF during ischemia and > 70% during reperfusion. All MR studies were carried out in a horizontal 14.1T magnet. Fast spin echo images with T2-weighted parameters were acquired to localize the volume of interest and evaluate the lesion size. Immediately after adjustment of field inhomogeneities, localized 1H MRS was applied to obtain the neurochemical profile from the striatum (6 to 8 microliters). Six animals (sham group) underwent nearly identical procedures without MCAO. Results: The 10-mins MCAO induced no MR- or histologically detectable lesion in most of the mice and a small lesion in some of them. We thus had two groups with the same duration of ischemia but a different outcome, which could be compared to sham-operated mice and more severe ischemic mice (30-mins MCAO). Lactate increase, a hallmark of ischemic insult, was only detected significantly after 30-mins MCAO, whereas at 3 h post ischemia, glutamine was increased in all ischemic mice independently of duration and outcome. In contrast, glutamate, and even more so, N-acetyl-aspartate, decreased only in those mice exhibiting visible lesions on T2-weighted images at 24 h. Conclusions: These results suggest that an increased glutamine/glutamate ratio is a sensitive marker indicating the presence of an excitotoxic insult. Glutamate and NAA, on the other hand, appear to predict permanent neuronal damage. In conclusion, as early as 3 h post ischemia, it is possible to identify early metabolic markers manifesting the presence of a mild ischemic insult as well as the lesion outcome at 24 h.
Resumo:
BACKGROUND AND PURPOSE: The study aims to assess the recanalization rate in acute ischemic stroke patients who received no revascularization therapy, intravenous thrombolysis, and endovascular treatment, respectively, and to identify best clinical and imaging predictors of recanalization in each treatment group. METHODS: Clinical and imaging data were collected in 103 patients with acute ischemic stroke caused by anterior circulation arterial occlusion. We recorded demographics and vascular risk factors. We reviewed the noncontrast head computed tomographies to assess for hyperdense middle cerebral artery and its computed tomography density. We reviewed the computed tomography angiograms and the raw images to determine the site and degree of arterial occlusion, collateral score, clot burden score, and the density of the clot. Recanalization status was assessed on recanalization imaging using Thrombolysis in Myocardial Ischemia. Multivariate logistic regressions were utilized to determine the best predictors of outcome in each treatment group. RESULTS: Among the 103 study patients, 43 (42%) received intravenous thrombolysis, 34 (33%) received endovascular thrombolysis, and 26 (25%) did not receive any revascularization therapy. In the patients with intravenous thrombolysis or no revascularization therapy, recanalization of the vessel was more likely with intravenous thrombolysis (P = 0·046) and when M1/A1 was occluded (P = 0·001). In this subgroup of patients, clot burden score, cervical degree of stenosis (North American Symptomatic Carotid Endarterectomy Trial), and hyperlipidemia status added information to the aforementioned likelihood of recanalization at the patient level (P < 0·001). In patients with endovascular thrombolysis, recanalization of the vessel was more likely in the case of a higher computed tomography angiogram clot density (P = 0·012), and in this subgroup of patients gender added information to the likelihood of recanalization at the patient level (P = 0·044). CONCLUSION: The overall likelihood of recanalization was the highest in the endovascular group, and higher for intravenous thrombolysis compared with no revascularization therapy. However, our statistical models of recanalization for each individual patient indicate significant variability between treatment options, suggesting the need to include this prediction in the personalized treatment selection.
Resumo:
A boy with a right congenital hemiparesis due to a left pre-natal middle cerebral artery infarct developed focal epilepsy at 33 months and then an insidious and subsequently more rapid, massive cognitive and behavioural regression with a frontal syndrome between the ages of 4 and 5 years with continuous spike-waves during sleep (CSWS) on the EEG. Both the epilepsy and the CSWS were immediately suppressed by hemispherotomy at the age of 5 years and 4 months. A behavioural-cognitive follow-up prior to hemispherotomy, an per-operative EEG and corticography and serial post-operative neuropsychological assessments were performed until the age of 11 years. The spread of the epileptic activity to the "healthy" frontal region was the cause of the reversible frontal syndrome. A later gradual long-term but incomplete cognitive recovery, with moderate mental disability was documented. This outcome is probably explained by another facet of the epilepsy, namely the structural effects of prolonged epileptic discharges in rapidly developing cerebral networks which are, at the same time undergoing the reorganization imposed by a unilateral early hemispheric lesion. Group studies on the outcome of children before and after hemispherectomy using only single IQ measures, pre- and post-operatively, may miss particular epileptic cognitive dysfunctions as they are likely to be different from case to case. Such detailed and rarely available complementary clinical and EEG data obtained in a single case at different time periods in relation to the epilepsy, including per-operative electrophysiological findings, may help to understand the different cognitive deficits and recovery profiles and the limits of full cognitive recovery.
Resumo:
An unusual association of a meningioma and an arteriovenous malformation is reported. A 68-year-old man developed left homonymous hemianopsia, left hemiparesis, and gaze palsy. Magnetic resonance imaging showed a right occipital mass lesion containing multiple signal-void areas with tubular and honeycomb appearance, suggesting a marked vascular component. An angiogram showed abnormal vasculature in the mass supplied by the posterior cerebral artery and a dural arteriovenous malformation on the tentorium. Neuropathological examination after total removal of the mass revealed a meningothelial meningioma including major portions of an arteriovenous malformation that extended from the dura and leptomeninges, through the meningioma, and into the occipital lobe, where the tumor was located.
Resumo:
Rapport de synthèse : Cette thèse a étudié en détail le cas d'un enfant souffrant d'une hémiplégie congénitale sur un infarctus prénatal étendu qui a développé une forme particulière d'épilepsie, le syndrome des pointes ondes continues du sommeil (POCS), associé à une régression mentale massive. Les caractéristiques de cette détérioration pointaient vers un dysfonctionnement de type frontal. Une chirurgie de l'épilepsie (hémisphérotomie) a, non seulement, permis la guérison de l'épilepsie mais une récupération rapide sur le plan comportemental et cognitif, suivie d'une reprise plus lente du développement, avec finalement à l'âge de 11 ans un niveau de déficience intellectuelle modérée. L'intérêt de cette étude réside dans le fait que l'enfant a pu être suivi prospectivement entre l'âge de 4.5 ans et 11 ans par des enregistrements électro-encéphalographiques (EEG) ainsi que des tests neuropsychologiques et des questionnaires de comportements sériés, permettant de comparer les périodes pré-, péri- et postopératoires, ce qui est rarement réalisable. Un enregistrement EEG de surface a même pu être effectué durant l'opération sur l'hémisphère non lésé, permettant de documenter l'arrêt des décharges épileptiformes généralisées dès la fin de l'intervention. L'hypothèse que nous avons- souhaité démontrer est que la régression comportementale et cognitive présentée par l'enfant après une période de développement précoce presque normale (retard de langage) était de nature épileptique : nous l'expliquons par la propagation de l'activité électrique anormale à partir de la lésion de l'hémisphère gauche vers les régions préservées, en particulier frontales bilatérales. L'hémisphérotomie a permis une récupération rapide en déconnectant l'hémisphère gauche lésé et épileptogène de l'hémisphère sain, qui a ainsi pu reprendre les fonctions cognitives les plus importantes. Les progrès plus lents par la suite et l'absence de rattrapage au delà d'un niveau de déficience mentale modérée sont plus difficiles à expliquer: on postule ici un effet de l'épilepsie sur le développement de réseaux neuronaux de l'hémisphère initialement non lésé, réseaux qui sont à la fois à un stade précoce de leur maturation et en cours de réorganisation suite à la lésion prénatale. La littérature sur les déficits cognitifs avant et après hemisphérotomie s'est surtout préoccupée du langage et de sa récupération possible. À notre connaissance, notre étude est la première à documenter la réversibilité d'une détérioration mentale avec les caractéristiques d'un syndrome frontal après hémisphérotomie. La chirurgie de l'épilepsie a offert ici une occasion unique de documenter le rôle de l'activité épileptique dans la régression cognitive puisqu'en interrompant brusquement la propagation de l'activité électrique anormale, on a pu comparer la dynamique du développement avant et après l'intervention. La mise en relation des multiples examens cliniques et EEG pratiqués chez un seul enfant sur plusieurs années a permis d'obtenir des informations importantes dans la compréhension des troubles cognitifs et du comportement associés aux épilepsies focales réfractaires. ABSTRACT : A boy with a right congenital hemiparesis due to a left pre-natal middle cerebral artery infarct developed focal epilepsy at 33 months and then an insidious and subsequently more rapid, massive cognitive and behavioural regression with a frontal syndrome between the ages of 4 and 5 years with continuous spike-waves during sleep (CSWS) on the EEG. Both the epilepsy and the CSWS were immediately suppressed by hemispherotomy at the age of 5 years and 4months. A behavioural-cognitive follow-up prior to hemispheratomy, an per-operative EEG and corticography and serial post-operative neuropsychological assessments were performed until the age of 11 years. The spread of the epileptic activity to the "healthy" frontal region was the cause of the reversible frontal syndrome. A later gradual long-term but incomplete cognitive recovery, with moderate mental disability was documented. T9ris outcome is probably explained by another facet of the epilepsy, namely the structural effects of prolonged epileptic dischazges in rapidly developing cerebral networks which are, at the same time undergoing the reorganization imposed by a unilateral early hemispheric lesion. Group studies on the outcome of children before and after hemispherectomy using only single IQ measures, pre- and postoperatively, may miss particular epileptic cognitive dysfunctions as they are likely to be different from case to case. Such detailed and rarely available complementary clinical and EEG data obtained in a single case at different time periods in relation to the epilepsy, including peroperative electrophysiological findings, may help to understand the different cognitive deficits and recovery profiles and the limits of full cognitive recovery.
Resumo:
INTRODUCTION: Cerebrovascular changes are rarely discussed in patients with hemimegalencephaly. These alterations have previously been associated with epileptical activity. CASE: We report the case of a 36-week gestation neonate presenting with total right hemimegalencephaly, as demonstrated by a magnetic resonance imaging (MRI) performed in the first days of life. Perfusion-weighted imaging displayed a clear hypervascularization of the right hemisphere. Diffusion-tensor imaging showed an arrangement of white matter fibers concentrically around the ventricle on the right hemisphere. AngioMRI showed an obvious asymmetry in the size of the middle cerebral arteries, with the right middle cerebral artery being prominent. The baby was free of clinical seizures during his first week of life. An electroencephalogram at that time displayed an asymmetric background activity, but no electrical seizures. CONCLUSION: Perfusion anomalies in hemimegalencephaly may not necessarily be related to epileptical activity, but may be related to vessel alterations.
Resumo:
OBJECTIVE: To assess whether thalamic strokes presenting with a central Horner's syndrome (HS) show specific clinicoanatomic patterns. METHODS: From the Lausanne Stroke Registry (period 1993 to spring 2002), the authors selected all patients with thalamic stroke presenting with ipsilateral HS. Patients with complete infarction of the posterior cerebral artery territory, with involvement of middle cerebral artery territory or bilateral lesions, were excluded. Lesions on brain MRI were correlated with standard neuroanatomic templates. RESULTS: Nine patients with thalamic infarction presenting with central HS were found; all showed contralateral ataxic hemiparesis (AH). Lesions involved the anterior or paramedian thalamus and extended to the hypothalamic or rostral paramedian mesencephalic area in all but one subject. Associated clinical signs included dysphasia (two patients), somnolence (six), vertical gaze paresis (two), asterixis (two), and hemihypesthesia (three). CONCLUSION: The alternate clinical pattern of central HS with contralateral AH is a stroke syndrome of the diencephalic-mesencephalic junction, resulting from the involvement of the common arterial supply to the paramedian/anterior thalamus, the posterior hypothalamus and the rostral paramedian midbrain.
Resumo:
BACKGROUND: Acute stroke presenting as monoparesis is rare, with a pure motor deficit in the arm or leg extending to an isolated facial paresis. OBJECTIVE: To raise the question if acute stroke presenting as monoparesis is a different entity from stroke with a more extensive motor deficit. PATIENTS: In the Lausanne Stroke Registry (1979-2000), 195 (4.1%) of 4802 patients met the clinical criteria for pure monoparesis involving the face (22%), arm (63%), or leg (15%). RESULTS: In the vast majority of cases (> 95%), monoparesis corresponded to ischemic stroke with a favorable outcome, with initial computed tomography scans or magnetic resonance images showing no signs of hemorrhage. The lesion for a facial deficit was most frequently located subcortically (internal capsule); for an arm deficit, in the superficial middle cerebral artery; and for a leg deficit, in the anterior cerebral artery territory. In pure monoparesis, only 17% of the patients had more than 1 risk factor as compared with 26% of those with bimodal and trimodal hemiparesis and with 46% of all patients with stroke other than those with pure motor stroke. The only frequent risk factor was hypertension (53%); however, this frequency was no different from that in other patients with stroke. No major stroke etiology could be identified in any of the 3 subgroups of monoparesis. CONCLUSION: Our finding of a wide range of stroke localization and etiology in monoparesis without any particular subgroup suggests that no specific plan of investigation can be recommended for these patients.
Resumo:
Inflammatory mechanisms are known to contribute to the pathophysiology of traumatic brain injury (TBI). Since bradykinin is one of the first mediators activated during inflammation, we investigated the role of bradykinin and its receptors in posttraumatic secondary brain damage. We subjected wild-type (WT), B(1)-, and B(2)-receptor-knockout mice to controlled cortical impact (CCI) and analyzed tissue bradykinin as well as kinin receptor mRNA and protein expression up to 48 h thereafter. Brain edema, contusion volume, and functional outcome were assessed 24 h and 7 days after CCI. Tissue bradykinin was maximally increased 2 h after trauma (P<0.01 versus sham). Kinin B(1) receptor mRNA was upregulated up to four-fold 24 h after CCI. Immunohistochemistry showed that B(1) and B(2) receptors were expressed in the brain and were significantly upregulated in the traumatic penumbra 1 to 24 h after CCI. B(2)R(-/-) mice had significantly less brain edema (-51% versus WT, 24 h; P<0.001), smaller contusion volumes ( approximately 50% versus WT 24 h and 7 d after CCI; P<0.05), and better functional outcome 7 days after TBI as compared with WT mice (P<0.05). The present results show that bradykinin and its B(2) receptors play a causal role for brain edema formation and cell death after TBI.
Resumo:
Early studies showed that the administration of the anti-inflammatory cytokine interleukin-10 (IL10) protects against permanent middle cerebral artery occlusion (MCAO) in mice. In this study, transgenic mice expressing murine IL10 (IL10T) directed by the major histocompatibility complex Ea promoter were produced and used to explore the effect of chronically increased IL10 levels on MCAO-related molecular mechanisms. IL10 was over-expressed in astrocytes, microglia, and endothelial brain cells in IL10T compared with wild type mice. Four days following MCAO, IL10T mice showed a 40% reduction in infarct size which was associated to significantly reduced levels of active caspase 3 compared with wild type mice. Under basal conditions, anti-inflammatory factors such as nerve growth factor and GSH were up-regulated and the pro-inflammatory cytokine IL1beta was down-regulated in the brain of IL10T animals. In addition, these mice displayed increased basal GSH levels in microglial and endothelial cells as well as a marked increase in manganese superoxide dismutase in endothelial lining blood vessels. Following ischemia, IL10T mice showed a marked reduction in pro-inflammatory cytokines, including tumor necrosis factor-alpha, interferon-gamma, and IL1beta. Our data indicate that constitutive IL10 over-expression is associated with a striking resistance to cerebral ischemia that may be attributed to changes in the basal redox properties of glial/endothelial cells.
Resumo:
Sleep-wake disturbances are frequently observed in stroke patients and are associated with poorer functional outcome. Until now the effects of sleep on stroke evolution are unknown. The purpose of the present study was to evaluate the effects of three sleep deprivation (SD) protocols on brain damages after focal cerebral ischemia in a rat model. Permanent occlusion of distal branches of the middle cerebral artery was induced in adult rats. The animals were then subjected to 6h SD, 12h SD or sleep disturbances (SDis) in which 3 x 12h sleep deprivation were performed by gentle handling. Infarct size and brain swelling were assessed by Cresyl violet staining, and the number of damaged cells was measured by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Behavioral tests, namely tape removal and cylinder tests, were performed for assessing sensorimotor function. In the 6h SD protocol, no significant difference (P > 0.05) was found either in infarct size (42.5 ± 30.4 mm3 in sleep deprived animals vs. 44.5 ± 20.5 mm3 in controls, mean ± s.d.), in brain swelling (10.2 ± 3.8 % in sleep deprived animals vs. 11.3 ± 2.0 % in controls) or in number of TUNEL-positive cells (21.7 ± 2.0/mm2 in sleep deprived animals vs. 23.0 ± 1.1/mm2 in controls). In contrast, 12h sleep deprivation increased infarct size by 40 % (82.8 ± 10.9 mm3 in SD group vs. 59.2 ± 13.9 mm3 in control group, P = 0.008) and number of TUNEL-positive cells by 137 % (46.8 ± 15/mm in SD group vs. 19.7 ± 7.7/mm2 in control group, P = 0.003). There was no significant difference (P > 0.05) in brain swelling (12.9 ± 6.3 % in sleep deprived animals vs. 11.6 ± 6.0 % in controls). The SDis protocol also increased infarct size by 76 % (3 x 12h SD 58.8 ± 20.4 mm3 vs. no SD 33.8 ± 6.3 mm3, P = 0.017) and number of TUNEL-positive cells by 219 % (32.9 ± 13.2/mm2 vs. 10.3 ± 2.5/mm2, P = 0.008). Brain swelling did not show any difference between the two groups (24.5 ± 8.4 % in SD group vs. 16.7 ± 8.9 % in control group, p > 0.05). Both behavioral tests did not show any concluding results. In summary, we demonstrate that sleep deprivation aggravates brain damages in a rat model of stroke. Further experiments are needed to unveil the mechanisms underlying these effects.