87 resultados para cationic dyes
Resumo:
The antennal lobe is the primary olfactory center in the insect brain and represents the anatomical and functional equivalent of the vertebrate olfactory bulb. Olfactory information in the external world is transmitted to the antennal lobe by olfactory sensory neurons (OSNs), which segregate to distinct regions of neuropil called glomeruli according to the specific olfactory receptor they express. Here, OSN axons synapse with both local interneurons (LNs), whose processes can innervate many different glomeruli, and projection neurons (PNs), which convey olfactory information to higher olfactory brain regions. Optical imaging of the activity of OSNs, LNs and PNs in the antennal lobe - traditionally using synthetic calcium indicators (e.g. calcium green, FURA-2) or voltage-sensitive dyes (e.g. RH414) - has long been an important technique to understand how olfactory stimuli are represented as spatial and temporal patterns of glomerular activity in many species of insects. Development of genetically-encoded neural activity reporters, such as the fluorescent calcium indicators G-CaMP and Cameleon, the bioluminescent calcium indicator GFP-aequorin, or a reporter of synaptic transmission, synapto-pHluorin has made the olfactory system of the fruitfly, Drosophila melanogaster, particularly accessible to neurophysiological imaging, complementing its comprehensively-described molecular, electrophysiological and neuroanatomical properties. These reporters can be selectively expressed via binary transcriptional control systems (e.g. GAL4/UAS, LexA/LexAop, Q system) in defined populations of neurons within the olfactory circuitry to dissect with high spatial and temporal resolution how odor-evoked neural activity is represented, modulated and transformed. Here we describe the preparation and analysis methods to measure odor-evoked responses in the Drosophila antennal lobe using G-CaMP. The animal preparation is minimally invasive and can be adapted to imaging using wide-field fluorescence, confocal and two-photon microscopes.
A key role of TRPC channels in the regulation of electromechanical activity of the developing heart.
Resumo:
Aims It is well established that dysfunction of voltage-dependent ion channels results in arrhythmias and conduction disturbances in the foetal and adult heart. However, the involvement of voltage-insensitive cationic TRPC (transient receptor potential canonical) channels remains unclear. We assessed the hypothesis that TRPC channels play a crucial role in the spontaneous activity of the developing heart.Methods and results TRPC isoforms were investigated in isolated hearts obtained from 4-day-old chick embryos. Using RT-PCR, western blotting and co-immunoprecipitation, we report for the first time that TRPC1, 3, 4, 5, 6, and 7 isoforms are expressed at the mRNA and protein levels and that they can form a macromolecular complex with the alpha 1C subunit of the L-type voltage-gated calcium channel (Cav1.2) in atria and ventricle. Using ex vivo electrocardiograms, electrograms of isolated atria and ventricle and ventricular mechanograms, we found that inhibition of TRPC channels by SKF-96365 leads to negative chrono-, dromo-, and inotropic effects, prolongs the QT interval, and provokes first-and second-degree atrioventricular blocks. Pyr3, a specific antagonist of TRPC3, affected essentially atrioventricular conduction. On the other hand, specific blockade of the L-type calcium channel with nifedipine rapidly stopped ventricular contractile activity without affecting rhythmic electrical activity.Conclusions These results give new insights into the key role that TRPC channels, via interaction with the Cav1.2 channel, play in regulation of cardiac pacemaking, conduction, ventricular activity, and contractility during cardiogenesis.
Characterization of a plant-derived peptide displaying water clarifying and antimicrobial activities
Resumo:
SUMMARY Drinking water is currently a scarce world resource, the preparation of which requires complex treatments that include clarification of suspended particles and disinfection. Seed extracts of Moringa oleifera Lam., a tropical tree, have been proposed as an environment- friendly alternative, due to their traditional use for the clarification of drinking water. However, the precise nature of the active components was unknown. Here, we show that recombinant or synthetic forms of a cationic seed polypeptide mediate efficient sedimentation of suspended mineral particles and bacteria. Unexpectedly, the polypeptide was also found to possesses a bactericidal activity capable of disinfecting heavily contaminated water. Furthermore, the polypeptide has been shown to efficiently kill several pathogenic bacteria, including antibiotic-resistant isolates of Pseudomona, Streptococcus and Legionella species. Structural modeling of the peptide coupled to the functional analysis of synthetic peptide derivatives delineated distinct structural determinants for the flocculation and antibacterial activities. Our results suggest that a glutamine-rich portion of the polypeptide is involved in the sedimentation process; alternatively, the antibacterial activity depends on a amphiphilic loop. Assembly of multiple copies of this loop into a branched peptide derivative strongly enhances antibacterial activity without displaying hemolytic effect. In conclusion, this polypeptide displays the unprecedented feature of combining efficient water purification and disinfectant properties indicating different molecular mechanisms involved in each case. This work not only identified the features responsible for these activities but also provides useful information that has implications for the further development of this cationic polypeptide as a potent antibacterial agent. RESUME L'eau potable est actuellement une ressource limitée dans le monde. La production d'eau propre à la consommation exige des traitements complexes, incluant la clarification des particules en suspension ainsi que sa désinfection par des additifs chimiques. Les extraits de la graine d'un arbre tropical, Moringa oleifera, sont utilisés traditionnellement en Afrique afin de clarifier l'eau. Quoique la nature exacte des composants actifs était inconnue, on a pu mettre en évidence un polypeptide cationique contenu dans ces graines, capable de sédimenter de manière efficace des particules minérales en suspension ainsi que des bactéries. Ce travail a aussi mis en évidence que ce polypeptide a une activité bactéricide, permettant une désinfection d'eau fortement contaminée. De plus, nous avons démontré que ce polypeptide est efficace contre de nombreuses souches bactériennes pathogènes, également celles résistantes aux antibiotiques comme Pseudomonas, Streptococcus et Legionella. L'analyse de la structure moléculaire de ce polypeptide, couplée à son analyse fonctionnelle a mis en évidence deux domaines structuraux distinct, un pour l'activité de floculation et l'autre pour l'activité antibactérienne. Nos résultats suggèrent que le domaine riche en glutamine est impliqué dans le processus de sédimentation et que l'activité antimicrobienne dépend d'un domaine formant une boucle amphiphilique. En ramifiant plusieurs copies de cette boucle on a pu augmenter de manière significative l'activité antibactérienne. En conclusion, nous avons pu démontrer que ce polypeptide à la capacité unique de combiner des propriétés de purification et de désinfection de l'eau, ce qui implique des mécanismes moléculaires distincts pour ces deux activités. Ce travail a permis d'identifier les domaines du polypeptide qui sont responsables de ses activités et offre une perspective pour le développement d'un nouvel agent antimicrobien.
Resumo:
There is a considerable discrepancy between the number of identified occupational-related bladder cancer cases and the estimated numbers particularly in emerging nations or less developed countries where suitable approaches are less or even not known. Thus, within a project of the World Health Organisation Collaborating Centres in Occupational Health, a questionnaire of the Dortmund group, applied in different studies, was translated into more than 30 languages (Afrikaans, Arabic, Bengali, Chinese, Czech, Dutch, English, Finnish, French, Georgian, German, Greek, Hindi, Hungarian, Indonesian, Italian, Japanese, Kannada, Kazakh, Kirghiz, Korean, Latvian, Malay, Persian (Farsi), Polish, Portuguese, Portuguese/Brazilian, Romanian, Russian, Serbo-Croatian, Slovak, Spanish, Spanish/Mexican, Tamil, Telugu, Thai, Turkish, Urdu, Vietnamese). The bipartite questionnaire asks for relevant medical information in the physician's part and for the occupational history since leaving school in the patient's part. Furthermore, this questionnaire is asking for intensity and frequency of certain occupational and non-occupational risk factors. The literature regarding occupations like painter, hairdresser or miner and exposures like carcinogenic aromatic amines, azo dyes, or combustion products is highlighted. The questionnaire is available on www.ifado.de/BladderCancerDoc.
Resumo:
By using both conventional and confocal laser scanning microscopy with three monoclonal antibodies recognizing nuclear matrix proteins we have investigated by means of indirect fluorescence whether an incubation of isolated nuclei at the physiological temperature of 37 degrees C induces a redistribution of nuclear components in human K562 erythroleukemia cells. Upon incubation of isolated nuclei for 45 min at 37 degrees C, we have found that two of the antibodies, directed against proteins of the inner matrix network (M(r) 125 and 160 kDa), gave a fluorescent pattern different from that observed in permeabilized cells. By contrast, the fluorescent pattern did not change if nuclei were kept at 0 degrees C. The difference was more marked in case of the 160-kDa polypeptide. The fluorescent pattern detected by the third antibody, which recognizes the 180-kDa nucleolar isoform of DNA topoisomerase II, was unaffected by heat exposure of isolated nuclei. When isolated nuclear matrices prepared from heat-stabilized nuclei were stained by means of the same three antibodies, it was possible to see that the distribution of the 160-kDa matrix protein no longer corresponded to that observable in permeabilized cells, whereas the fluorescent pattern given by the antibody to the 125-kDa polypeptide resembled that detectable in permeabilized cells. The 180-kDa isoform of topoisomerase II was still present in the matrix nucleolar remnants. We conclude that a 37 degrees C incubation of isolated nuclei induces a redistribution of some nuclear matrix antigens and cannot prevent the rearrangement in the spatial organization of one of these antigens that takes place during matrix isolation in human erythroleukemia cells. The practical relevance of these findings is discussed.
Resumo:
PURPOSE: To optimize conditions for photodynamic detection (PDD) and photodynamic therapy (PDT) of bladder carcinoma, urothelial accumulation of protoporphyrin IX (PpIX) and conditions leading to cell photodestruction were studied. MATERIALS AND METHODS: Porcine and human bladder mucosae were superfused with derivatives of 5-aminolevulinic acid (ALA). PpIX accumulation and distribution across the mucosa was studied by microspectrofluorometry. Cell viability and structural integrity were assessed by using vital dyes and microscopy. RESULTS: ALA esters, especially hexyl-ALA, accelerated and regularized urothelial PpIX accumulation and allowed for necrosis upon illumination. CONCLUSIONS: hexyl-ALA used at micromolar concentrations is the most efficient PpIX precursor for PDD and PDT.
Resumo:
We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the artefactual concerns encountered in using heterologous systems are totally excluded.
Resumo:
White-light cystoscopy and cytology are the standard tools to diagnose bladder cancer. White-light cystoscopy is excellent to detect macroscopic exophytic tumors, but its sensitivity is poor for flat tumors such as carcinoma in situ. Use of fluorescence cystoscopy during transurethral bladder resection improve tumor detection, particulary for carcinoma in situ. Fluorescence cystoscopy reduce residual tumor rate, especially for voluminous and multifocal tumors with consecutive lower recurrence. Fluorescence is now recommended to diagnose and treat bladder cancer.
Modern Vaccines/Adjuvants Formulation-Session 2 (Plenary II): May 15-17, 2013-Lausanne, Switzerland.
Resumo:
On the 15-17th May 2013, the Fourth International Conference on Modern Vaccines/Adjuvants Formulation was organized in Lausanne, Switzerland, and gathered stakeholders from academics and from the industry to discuss several challenges, advances and promises in the field of vaccine adjuvants. Plenary session 2 of the meeting was composed of four different presentations covering: (1) the recent set-up of an adjuvant technology transfer and training platform in Switzerland, (2) the proposition to revisit existing paradigms of modern vaccinology, (3) the properties of polyethyleneimine as potential new vaccine adjuvant, and (4) the progresses in the design of HIV vaccine candidates able to induce broadly neutralizing antibodies.
Resumo:
PDMS-based microfluidic devices combined with lanthanide-based immunocomplexes have been successfully tested for the multiplex detection of biomarkers on cancerous tissues, revealing an enhanced sensitivity compared to classical organic dyes.
Resumo:
We have recently shown that immunophotodetection of human colon carcinomas in nude mice and in patients is possible by using anti-carcinoembryonic antigen monoclonal antibodies (MAb) coupled to fluorescein. The most common clinical application of photodiagnosis has been for the detection of squamous cell carcinomas (SCC) in the upper respiratory tract, but the free dyes used have a poor tumor selectivity. We selected the known MAb E48 directed against SCC and coupled it to a fluorescent dye: indopentamethinecyanin (indocyanin). This dye has an advantage over fluorescein in that it emits a more penetrating fluorescent red signal at 667 nm after excitation with a laser ray of 640 nm. In vitro, an conjugate with an indocyanin:MAb molar ratio of 2, and an additional trace labeling with 125I, showed more than 80% of binding to cells from the SCC line A431. In vivo, when injected i.v. into nude mice bearing xenografts of the same carcinoma line, the MAb E48-(indocyanin)2 conjugate was almost as efficient as the unconjugated MAb E48 in terms of specific tumor localization: 15% of the injected dose per g of tumor at 24 h after injection and a tumor:overall normal tissue ratio of 6-8. There was no selective tumor localization of an irrelevant IgG1-(indocyanin)2 conjugate. Immunophotodetection of the s.c. SCC xenografts on mice given injections of 100 micrograms of MAb E48-(indocyanin), conjugate (representing 1 microgram of indocyanin) was performed at 24 h. Upon laser irradiation, clearly detectable red fluorescence from the indocyanin-MAb conjugate was observed specifically in the SCC xenografts across the mouse skin. In comparison, injection of 100 micrograms of a MAb E48 coupled to 2 micrograms of fluorescein gave a specific green fluorescence signal in the tumor xenografts, which was detectable, however, only after removing the mouse skin. Injection i.v. of a 15 times higher amount of free indocyanin (15 micrograms) gave a diffuse red fluorescence signal all over the mouse body with no definite increase in intensity in the tumor, indicating a lack of tumor selectivity of the free dye. The results demonstrate the possibility of broadening and improving the efficiency of tumor immunophotodiagnosis by coupling to a MAb directed against SCC, a fluorescent dye absorbing and emitting at higher wavelength than fluorescein, and thus having deeper tissue penetration and lower tissue autofluorescence. Such a demonstration opens the way to a new form of clinical immunophotodiagnosis and possibly to the development of a more specific approach to phototherapy of early bronchial carcinomas.
Resumo:
Human cytosolic thymidine kinase (hTK1) has proven to be a suitable target for the noninvasive imaging of cancer cell proliferation using radiolabeled thymidine analogues such as [(18)F]3'-fluoro-3'-deoxythymidine ([(18)F]FLT). A thymidine analogue for single photon emission computed tomography (SPECT), which incorporates the readily available and inexpensive nuclide technetium-99m, would be of considerable practical interest. hTK1 is known to accommodate modification of the structure of the natural substrate thymidine at the positions N3 and C3' and, to a lesser extent, C5. In this work, we used the copper-catalyzed azide-alkyne cycloaddition to synthesize two series of derivatives in which thymidine is functionalized at either the C3' or N3 position with chelating systems suitable for the M(CO)(3) core (M = (99m)Tc, Re). The click chemistry approach enabled complexes with different structures and overall charges to be synthesized from a common precursor. Using this strategy, the first organometallic hTK1 substrates in which thymidine is modified at the C3' position were identified. Phosphorylation of the organometallic derivatives was measured relative to thymidine. We have shown that the influence of the overall charge of the derivatives is dependent on the position of functionalization. In the case of the C3'-functionalized derivatives, neutral and anionic substrates were most readily phosphorylated (20-28% of the value for the parent ligand thymidine), whereas for the N3-functionalized derivatives, cationic and neutral complexes were apparently better substrates for the enzyme (14-18%) than anionic derivatives (9%).
Resumo:
The interaction of a parasite and a host cell is a complex process, which involves several steps: (1) attachment to the plasma membrane, (2) entry inside the host cell, and (3) hijacking of the metabolism of the host. In biochemical experiments, only an event averaged over the whole cell population can be analyzed. The power of microscopy, however, is to investigate individual events in individual cells. Therefore, parasitologists frequently perform experiments with fluorescence microscopy using different dyes to label structures of the parasite or the host cell. Though the resolution of light microscopy has greatly improved, it is not sufficient to reveal interactions at the ultrastructural level. Furthermore, only specifically labeled structures can be seen and related to each other. Here, we want to demonstrate the additional value of electron microscopy in this area of research. Investigation of the different steps of parasite-host cell interaction by electron microscopy, however, is often hampered by the fact that there are only a few cells infected, and therefore it is difficult to find enough cells to study. A solution is to profit from low magnification, hence large overview, and specific location of the players by fluorescence labels in a light microscope with the high power resolution and structural information provided by an electron microscope, in short by correlative light and electron microscopy.
Resumo:
A highly efficient synthesis of the biologically important fluorescent probe dansyl α-GalCer is presented. Key in our strategy is the incorporation of the fluorescent dansyl group at an early stage in the synthesis to facilitate in the monitoring and purification of intermediates via TLC and flash column chromatography, respectively, and the use of a high yielding α-selective glycosylation reaction between the phytosphingosine lipid and a galactosyl iodide donor. The ability of dansyl α-GalCer to activate iNKT cells and to serve as a fluorescent marker for the uptake of glycolipid by dendritic cells is also presented.
Resumo:
The purpose of this study is to analyze the retina and choroid response following krypton laser photocoagulation. Ninety-two C57BL6/Sev129 and 32 C57BL/6J, 5-6-week-old mice received one single krypton (630 nm) laser lesion: 50 microm, 0.05 s, 400 mW. On the following day, every day thereafter for 1 week and every 2-3 days for the following 3 weeks, serial sections throughout the lesion were systematically collected and studied. Immunohistology using specific markers or antibodies for glial fibrillary acidic protein (GFAP) (astrocytes, glia and Muller's cells), von Willebrand (vW) (vascular endothelial cells), TUNEL (cells undergoing caspase dependent apoptosis), PCNA (proliferating cell nuclear antigen) p36, CD4 and F4/80 (infiltrating inflammatory and T cells), DAPI (cell nuclei) and routine histology were carried out. Laser confocal microscopy was also performed on flat mounts. Temporal and spatial observations of the created photocoagulation lesions demonstrate that, after a few hours, activated glial cells within the retinal path of the laser beam express GFAP. After 48 h, GFAP-positive staining was also detected within the choroid lesion center. "Movement" of this GFAP-positive expression towards the lasered choroid was preceded by a well-demarcated and localized apoptosis of the retina outer nuclear layer cells within the laser beam path. Later, death of retinal outer nuclear cells and layer thinning at this site was followed by evagination of the inner nuclear retinal layer. Funneling of the entire inner nuclear and the thinned outer nuclear layers into the choroid lesion center was accompanied by "dragging" of the retinal capillaries. Thus, from days 10 to 14 after krypton laser photocoagulation onward, well-formed blood capillaries (of retinal origin) were observed within the lesion. Only a few of the vW-positive capillary endothelial cells stained also for PCNA p36. In the choroid, dilatation of the vascular bed occurred at the vicinity of the photocoagulation site and around it. Confocal microscopy demonstrates that the vessels throughout the path lesion are located within the neuroretina while in the choroid (after separation of the neural retina) only GFAP-positive but no lectin-positive cells can be seen. The involvement of infiltrating inflammatory cells in these remodeling and healing processes remained minimal throughout the study period. During the 4 weeks following krypton laser photocoagulation in the mouse eye, processes of wound healing and remodeling appear to be driven by cells (and vessels) originating from the retina.