140 resultados para catalogers distribution list
Resumo:
Species distribution models (SDMs) are widely used to explain and predict species ranges and environmental niches. They are most commonly constructed by inferring species' occurrence-environment relationships using statistical and machine-learning methods. The variety of methods that can be used to construct SDMs (e.g. generalized linear/additive models, tree-based models, maximum entropy, etc.), and the variety of ways that such models can be implemented, permits substantial flexibility in SDM complexity. Building models with an appropriate amount of complexity for the study objectives is critical for robust inference. We characterize complexity as the shape of the inferred occurrence-environment relationships and the number of parameters used to describe them, and search for insights into whether additional complexity is informative or superfluous. By building 'under fit' models, having insufficient flexibility to describe observed occurrence-environment relationships, we risk misunderstanding the factors shaping species distributions. By building 'over fit' models, with excessive flexibility, we risk inadvertently ascribing pattern to noise or building opaque models. However, model selection can be challenging, especially when comparing models constructed under different modeling approaches. Here we argue for a more pragmatic approach: researchers should constrain the complexity of their models based on study objective, attributes of the data, and an understanding of how these interact with the underlying biological processes. We discuss guidelines for balancing under fitting with over fitting and consequently how complexity affects decisions made during model building. Although some generalities are possible, our discussion reflects differences in opinions that favor simpler versus more complex models. We conclude that combining insights from both simple and complex SDM building approaches best advances our knowledge of current and future species ranges.
Resumo:
BACKGROUND: Fat redistribution, increased inflammation and insulin resistance are prevalent in non-diabetic subjects treated with maintenance dialysis. The aim of this study was to test whether pioglitazone, a powerful insulin sensitizer, alters body fat distribution and adipokine secretion in these subjects and whether it is associated with improved insulin sensitivity. TRIAL DESIGN: This was a double blind cross-over study with 16 weeks of pioglitazone 45 mg vs placebo involving 12 subjects. METHODS: At the end of each phase, body composition (anthropometric measurements, dual energy X-ray absorptometry (DEXA), abdominal CT), hepatic and muscle insulin sensitivity (2-step hyperinsulinemic euglycemic clamp with 2H2-glucose) were measured and fasting blood adipokines and cardiometabolic risk markers were monitored. RESULTS: Four months treatment with pioglitazone had no effect on total body weight or total fat but decreased the visceral/sub-cutaneous adipose tissue ratio by 16% and decreased the leptin/adiponectin (L/A) ratio from 3.63×10-3 to 0.76×10-3. This was associated with a 20% increase in hepatic insulin sensitivity without changes in muscle insulin sensitivity, a 12% increase in HDL cholesterol and a 50% decrease in CRP. CONCLUSIONS/LIMITATIONS: Pioglitazone significantly changes the visceral-subcutaneous fat distribution and plasma L/A ratio in non diabetic subjects on maintenance dialysis. This was associated with improved hepatic insulin sensitivity and a reduction of cardio-metabolic risk markers. Whether these effects may improve the outcome of non diabetic end-stage renal disease subjects on maintenance dialysis still needs further evaluation. TRIAL REGISTRATION: ClinicalTrial.gov NCT01253928.
Resumo:
Herpes simplex ocular infection is a major cause of corneal blindness. Local antiviral treatments exist but are associated with corneal toxicity, and resistance has become an issue. We evaluated the biodistribution and efficacy of a humanized anti-herpes simplex virus (anti-HSV) IgG FAb fragment (AC-8; 53 kDa) following repeated topical administration. AC-8 was found in the corneal epithelium, anterior stroma, subepithelial stromal cells, and retinal glial cells, with preferential entry through the ocular limbus. AC-8 was active against 13 different strains of HSV-1, with 50% and 90% mean effective concentrations (MEC(50) and MEC(90), respectively) ranging from 0.03 to 0.13 μg/ml, indicating broad-spectrum activity. The in vivo efficacy of AC-8 was evaluated in a mouse model of herpes-induced ocular disease. Treatment with low-dose AC-8 (1 mg/ml) slightly reduced the ocular disease scores. A greater reduction of the disease scores was observed in the 10-mg/ml AC-8-treated group, but not as much as with trifluridine (TFT). AC-8 treatment reduced viral titers but less than trifluridine. AC-8 did not display any toxicity to the cornea or other structures in the eye. In summary, topical instillation of an anti-HSV FAb can be used on both intact and ulcerated corneas. It is well tolerated and does not alter reepithelialization. Further studies to improve the antiviral effect are needed for AC-8 to be considered for therapeutic use.
Resumo:
Prepro-RFRP-containing neurons have recently been described in the mammalian brain. These neurons are only found in the tuberal hypothalamus. In this work, we have provided a detailed analysis of the distribution of cells expressing the RFRP mRNA, and found them in seven anatomical structures of the tuberal hypothalamus. No co-expression with melanin-concentrating hormone (MCH) or hypocretin (Hcrt), that are also described in neurons of the tuberal hypothalamus, was observed. Using the BrdU method, we found that all RFRP cell bodies are generated between E13 and E14. Thus, RFRP neurons form a specific cell population with a complex distribution pattern in the tuberal hypothalamus. However, they are generated in one peak. These observations are discussed with data concerning the distribution and genesis of the MCH and Hcrt cell populations that are also distributed in the tuberal hypothalamus.
Resumo:
A factor limiting preliminary rockfall hazard mapping at regional scale is often the lack of knowledge of potential source areas. Nowadays, high resolution topographic data (LiDAR) can account for realistic landscape details even at large scale. With such fine-scale morphological variability, quantitative geomorphometric analyses become a relevant approach for delineating potential rockfall instabilities. Using digital elevation model (DEM)-based ?slope families? concept over areas of similar lithology and cliffs and screes zones available from the 1:25,000 topographic map, a susceptibility rockfall hazard map was drawn up in the canton of Vaud, Switzerland, in order to provide a relevant hazard overview. Slope surfaces over morphometrically-defined thresholds angles were considered as rockfall source zones. 3D modelling (CONEFALL) was then applied on each of the estimated source zones in order to assess the maximum runout length. Comparison with known events and other rockfall hazard assessments are in good agreement, showing that it is possible to assess rockfall activities over large areas from DEM-based parameters and topographical elements.
Resumo:
The root-colonizing bacterium Pseudomonas fluorescens CHA0 was used to construct an oxygen-responsive biosensor. An anaerobically inducible promoter of Pseudomonas aeruginosa, which depends on the FNR (fumarate and nitrate reductase regulation)-like transcriptional regulator ANR (anaerobic regulation of arginine deiminase and nitrate reductase pathways), was fused to the structural lacZ gene of Escherichia coli. By inserting the reporter fusion into the chromosomal attTn7 site of P. fluorescens CHA0 by using a mini-Tn7 transposon, the reporter strain, CHA900, was obtained. Grown in glutamate-yeast extract medium in an oxystat at defined oxygen levels, the biosensor CHA900 responded to a decrease in oxygen concentration from 210 x 10(2) Pa to 2 x 10(2) Pa of O(2) by a nearly 100-fold increase in beta-galactosidase activity. Half-maximal induction of the reporter occurred at about 5 x 10(2) Pa. This dose response closely resembles that found for E. coli promoters which are activated by the FNR protein. In a carbon-free buffer or in bulk soil, the biosensor CHA900 still responded to a decrease in oxygen concentration, although here induction was about 10 times lower and the low oxygen response was gradually lost within 3 days. Introduced into a barley-soil microcosm, the biosensor could report decreasing oxygen concentrations in the rhizosphere for a 6-day period. When the water content in the microcosm was raised from 60% to 85% of field capacity, expression of the reporter gene was elevated about twofold above a basal level after 2 days of incubation, suggesting that a water content of 85% caused mild anoxia. Increased compaction of the soil was shown to have a faster and more dramatic effect on the expression of the oxygen reporter than soil water content alone, indicating that factors other than the water-filled pore space influenced the oxygen status of the soil. These experiments illustrate the utility of the biosensor for detecting low oxygen concentrations in the rhizosphere and other soil habitats.
Resumo:
This article shows the current distribution of seven ant species of the genus Formica (Hymenoptera, Formicidae, Formicinae) in the canton Waadt. Five species of wood ants (Formica subgenus Formica s.str.: F. rufa, F. polyctena, F. pratensis, F. lugubris et F. paralugubris) and two close species F (Formica) truncorum) et F. (Raptiformica) snaguinea) were investigated. The records originate from different surveys between 1996 and 2009 and offer the opportunity of an up to date overview of the species distribution.
Resumo:
The monocarboxylate transporter MCT2 belongs to a large family of membrane proteins involved in the transport of lactate, pyruvate and ketone bodies. Although its expression in rodent brain has been well documented, the presence of MCT2 in the human brain has been questioned on the basis of low mRNA abundance. In this study, the distribution of the monocarboxylate transporter MCT2 has been investigated in the cortex of normal adult human brain using an immunohistochemical approach. Widespread neuropil staining in all cortical layers was observed by light microscopy. Such a distribution was very similar in three different cortical areas investigated. At the cellular level, the expression of MCT2 could be observed in a large number of neurons, in fibers both in grey and white matter, as well as in some astrocytes, mostly localized in layer I and in the white matter. Double staining experiments combined with confocal microscopy confirmed the neuronal expression but also suggested a preferential postsynaptic localization of synaptic MCT2 expression. A few astrocytes in the grey matter appeared to exhibit MCT2 labelling but at low levels. Electron microscopy revealed strong MCT2 expression at asymmetric synapses in the postsynaptic density and also within the spine head but not in the presynaptic terminal. These data not only demonstrate neuronal MCT2 expression in human, but since a portion of it exhibits a distinct synaptic localization, it further supports a putative role for MCT2 in adjustment of energy supply to levels of activity.
Resumo:
Predictive species distribution modelling (SDM) has become an essential tool in biodiversity conservation and management. The choice of grain size (resolution) of environmental layers used in modelling is one important factor that may affect predictions. We applied 10 distinct modelling techniques to presence-only data for 50 species in five different regions, to test whether: (1) a 10-fold coarsening of resolution affects predictive performance of SDMs, and (2) any observed effects are dependent on the type of region, modelling technique, or species considered. Results show that a 10 times change in grain size does not severely affect predictions from species distribution models. The overall trend is towards degradation of model performance, but improvement can also be observed. Changing grain size does not equally affect models across regions, techniques, and species types. The strongest effect is on regions and species types, with tree species in the data sets (regions) with highest locational accuracy being most affected. Changing grain size had little influence on the ranking of techniques: boosted regression trees remain best at both resolutions. The number of occurrences used for model training had an important effect, with larger sample sizes resulting in better models, which tended to be more sensitive to grain. Effect of grain change was only noticeable for models reaching sufficient performance and/or with initial data that have an intrinsic error smaller than the coarser grain size.
Resumo:
In Alzheimer's disease (AD), synaptic alterations play a major role and are often correlated with cognitive changes. In order to better understand synaptic modifications, we compared alterations in NMDA receptors and postsynaptic protein PSD-95 expression in the entorhinal cortex (EC) and frontal cortex (FC; area 9) of AD and control brains. We combined immunohistochemical and image analysis methods to quantify on consecutive sections the distribution of PSD-95 and NMDA receptors GluN1, GluN2A and GluN2B in EC and FC from 25 AD and control cases. The density of stained receptors was analyzed using multivariate statistical methods to assess the effect of neurodegeneration. In both regions, the number of neuronal profiles immunostained for GluN1 receptors subunit and PSD-95 protein was significantly increased in AD compared to controls (3-6 fold), while the number of neuronal profiles stained for GluN2A and GluN2B receptors subunits was on the contrary decreased (3-4 fold). The increase in marked neuronal profiles was more prominent in a cortical band corresponding to layers 3 to 5 with large pyramidal cells. Neurons positive for GluN1 or PSD-95 staining were often found in the same localization on consecutive sections and they were also reactive for the anti-tau antibody AD2, indicating a neurodegenerative process. Differences in the density of immunoreactive puncta representing neuropile were not statistically significant. Altogether these data indicate that GluN1 and PSD-95 accumulate in the neuronal perikarya, but this is not the case for GluN2A and GluN2B, while the neuropile compartment is less subject to modifications. Thus, important variations in the pattern of distribution of the NMDA receptors subunits and PSD-95 represent a marker in AD and by impairing the neuronal network, contribute to functional deterioration.
Resumo:
The MIGCLIM R package is a function library for the open source R software that enables the implementation of species-specific dispersal constraints into projections of species distribution models under environmental change and/or landscape fragmentation scenarios. The model is based on a cellular automaton and the basic modeling unit is a cell that is inhabited or not. Model parameters include dispersal distance and kernel, long distance dispersal, barriers to dispersal, propagule production potential and habitat invasibility. The MIGCLIM R package has been designed to be highly flexible in the parameter values it accepts, and to offer good compatibility with existing species distribution modeling software. Possible applications include the projection of future species distributions under environmental change conditions and modeling the spread of invasive species.