98 resultados para beta-D-fructofuranosidase
Resumo:
Fatty acids can favour the development of Type 2 diabetes by reducing insulin secretion and inducing apoptosis of pancreatic beta-cells. Here, we show that sustained exposure of the beta-cell line MIN6 or of isolated pancreatic islets to the most abundant circulating fatty acid palmitate increases the level of C/EBPbeta, an insulin transcriptional repressor. In contrast, two unsaturated fatty acids, oleate and linoleate were without effect. The induction of C/EBPbeta elicited by palmitate was prevented by inhibiting the ERK1/2 MAP kinase pathway or by reducing mitochondrial fatty acid oxidation with an inhibitor of Carnitine Palmitoyl Transferase-1. Overexpression of C/EBPbeta mimicked the detrimental effects of palmitate and resulted in a drastic reduction in insulin promoter activity, impairment in the capacity to respond to secretory stimuli and an increase in apoptosis. Our data suggest a potential involvement of C/EBPbeta as mediator of the deleterious effects of unsaturated free fatty acids on beta-cell function.
Resumo:
Despite the presence of tumor-specific effector cells in the circulation of cancer patients, the immune response of the majority of these patients is not sufficient to prevent the growth and spread of their tumors. That tumor cells can be killed in vitro by tumor-reactive cytotoxic T cells is testimony to the fact that the tumors are not inherently resistant to T cell killing, but rather that there is a failure in immune recognition and effector cell activation. Many reasons for this failure of the body's defense system have been suggested, including the inability of tumor-reactive lymphocytes to migrate to tumor tissue. Here we designed a strategy to improve homing of primary lymphocytes into vascularized tumors. As a homing molecule we selected the integrin alpha v beta 3 since it is expressed by angiogenic vascular endothelium in tumors. To promote lymphocyte adhesion to alpha v beta 3 we "painted" primary lymphocytes with a recombinant, glycosylphosphatidylinositol-linked high-affinity ligand for alpha v beta 3. These painted lymphocytes specifically bound to alpha v beta 3 in vitro and homed to vascularized, solid tumors in vivo. This novel strategy may provide a significant advance in anti-tumor treatment such as adoptive immune therapy.
Resumo:
AbstractPPARP is a nuclear receptor responding in vivo to several free fatty acids, and implicated in cell metabolism, differentiation and survival. PPARp is ubiquitously expressed but shows high expression in the developing and adult brain. PPARp is expressed in different cell types such as neurons and astrocytes, where it might play a role in metabolism. To study this nuclear receptor the laboratory engineered a PPARP -/- mouse model. The aim of my PhD was to dissect the role of PPARP in astrocytes.Experiments in primary culture revealed that cortical astrocytes from PPARP -/- mouse have an impaired energetic metabolism. Unstimulated PPARP -/- astrocytes exhibit a 30% diminution in glucose uptake, correlating to a 30% decrease in lactate release and intracellular glucose. After acute stimulation by D- aspartate mimicking glutamate exposure, both WT and -/- astrocytes up-regulate their metabolism to respond to the increasing energy needed (ATP) for glutamate uptake. According to the Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), the ratio between glucose uptake/ lactate release is 1. However, stimulated PPARp -/- astrocytes display a higher increase in lactate release than glucose uptake which remains lower than in WT. The extra glucose equivalents could come from the degradation of intra cellular glycogen stores, which indeed decrease in PPARP -/- cells upon stimulation. Lower glucose metabolism correlates with a decreased acute glutamate uptake in PPARP -/- astrocytes. Reciprocally, we also observed an increase of glutamate uptake and ATP production after treatment of WT astrocytes with a PPARp agonist. Glutamate transporter protein expression is not affected. However, their trafficking and localization might be altered as PPARp -/- astrocytes have higher cholesterol levels, which may also affect proper transporter structure in the membrane.Metabolism, transporter localization and cholesterol levels are respectively linked to cell mobility, cell cytoskeleton and cellular membrane composition. All three functions are important in astrocytes to in vivo acquire star shaped morphology, in a process known as stellation. PPARP -/- astrocytes showed an impaired acquired stellation in presence of neurons or chemical stimuli, as well as more actin stress fibers and cell adhesion structures. While non stellation of astrocytes is mainly an in vitro phenomenon, it reveals PPARp -/- primary astrocytes inability to respond to different exterior stimuli. These morphological phenotypes correlate with a slower migration in cell culture wound healing assays.This thesis work demonstrates that PPARp is implicated in cortical astrocyte glucose metabolism. PPARp absence leads to an unusual intracellular glycogen use. Added to the effect on acute glutamate uptake and astrocyte migration, PPARp could be an interesting target for neuroprotection therapies.RésuméPPARP est un récepteur nucléaire qui a pour ligands naturels certains acides gras libres. Il est impliqué dans le métabolisme, la différentiation et la survie des cellules. PPARP est ubiquitaire, et a une expression élevée dans le cerveau en développement ainsi qu'adulte. PPARp est exprimé dans différents types cellulaires tels que les neurones et les astrocytes, où il régule potentiellement leurs métabolismes. Pour étudier ce récepteur nucléaire, le laboratoire a créé un modèle de souris PPARp -/-. L'objectif de ma thèse est de comprendre le rôle de PPARp dans les astrocytes.Les expériences montrent un défaut du métabolisme énergétique dans les astrocytes corticaux primaires tirés de souris PPARp -/-. Sans stimulation, l'entrée du glucose dans les astrocytes PPARP -/- est diminuée de 30% ce qui correspond à une diminution de 30% du relargage du lactate. Après stimulation par du D-Aspartate qui mime une exposition au glutamate, les astrocytes WT et -/- augmentent leur métabolisme en réponse à la demande accrue en énergie (ATP) due à l'entrée du glutamate. D'après l'Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), le ratio entre le glucose entrant et le lactate sortant est de 1. Cependant le relargage du lactate dans les astrocytes PPARP-/- est plus élevé que l'entrée du glucose. L'apport supplémentaire de glucose transformé en lactate pourrait provenir de la dégradation des stocks de glycogène intracellulaire, qui sont partiellement diminués après stimulation dans les cellules PPARP -/-. Un métabolisme plus faible du glucose corrèle avec une réduction de l'import du glutamate dans les astrocytes PPARp -/-. Réciproquement, nous observons une augmentation de l'import du glutamate et de la production d'ATP après traitement avec l'agoniste pour PPARp. Bien que l'expression des transporteurs de glutamate ne soit pas affectée, nous ne pouvons pas exclure que leur localisation et leur structure soient altérées du fait du niveau élevé de cholestérol dans les astrocytes PPARp -/-.Le métabolisme, la localisation des transporteurs et le niveau de cholestérol sont tous liés au cytosquelette, à la mobilité, et à la composition des membranes cellulaires. Toutes ces fonctions sont importantes pour les astrocytes pour acquérir leur morphologie in vivo. Les astrocytes PPARP -/- présentent un défaut de stellation, aussi bien en présence de neurones que de stimuli chimiques, ainsi qu'un plus grand nombre de fibres de stress (actine) et de structures d'adhésion cellulaire. Bien que les astrocytes non stellaires soient principalement observés in vitro, le défaut de stellation des astrocytes primaires PPARp -/- indique une incapacité à répondre aux différents stimuli extérieurs. Ces phénotypes morphologiques corrèlent avec une migration plus lente en cas de lésion de la culture.Ce travail de thèse a permis de démontrer l'implication de PPARP dans le métabolisme du glucose des astrocytes corticaux. L'absence de ce récepteur nucléaire amène à l'utilisation du glucose intracellulaire, auquel s'ajoutent les effets sur l'import du glutamate et la migration des astrocytes. PPARp aurait des effets neuroprotecteurs, et de ce fait pourrait être utilisé à des fins thérapeutiques.
Resumo:
Prostacyclin and its mimetics are used therapeutically for the treatment of pulmonary hypertension. These drugs act via cell surface prostacyclin receptors (IP receptors); however, some of them can also activate the nuclear receptor peroxisome proliferator-activated receptor beta (PPARbeta). We examined the possibility that PPARbeta is a therapeutic target for the treatment of pulmonary hypertension. Using the newly approved (for pulmonary hypertension) prostacyclin mimetic treprostinil sodium, reporter gene assays for PPARbeta activation and measurement of lung fibroblast proliferation were analyzed. Treprostinil sodium was found to activate PPARbeta in reporter gene assays and to inhibit proliferation of human lung fibroblasts at concentrations consistent with an effect on PPARs but not on IP receptors. The effects of treprostinil sodium on human lung cell proliferation are mimicked by those of the highly selective PPARbeta ligand GW0742. There are no receptor antagonists for PPARbeta or for IP receptors, but by using lung fibroblasts cultured from mice lacking PPARbeta (PPARbeta-/-) or IP (IP-/-), we demonstrate that the antiproliferative effects of treprostinil sodium are mediated by PPARbeta and not IP in lung fibroblasts. These observations suggest that some of the local, longer-term benefits of treprostinil sodium on reducing the remodeling associated with pulmonary hypertension may be mediated by PPARbeta. This study is the first to identify PPARbeta as a potential therapeutic target for the treatment of pulmonary hypertension, which is important because orally active PPARbeta ligands have been developed for the treatment of dyslipidemia.
Resumo:
Beta-lactam antibiotics allergies are common. Up to 10% of the population describe a former allergy to penicillins. However only 10 to 15% of these individuals are actually allergic. In most cases, beta-lactam antibiotics will be avoided and replaced by other antibiotics such as quinolones. This fear of a serious allergic reaction has an economic impact and may lead to the emergence of antibiotic resistance. A thorough allergic work-up can accurately determine true allergic patients. Most of the patients with a proven allergy will be able to tolerate other antibiotics belonging to the beta-lactam family. This article focuses on the management of beta-lactam allergic patients.
Resumo:
Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 and PC1/3 together with significant amounts of GLP-1 and GIP were detected in alpha cells. Knockout of GLP-1R abolished these islet adaptations and paradoxically decreased pancreatic insulin, GLP-1 and GIP. This was associated with abolition of normal pregnancy-induced increases in plasma GIP, L-cell numbers, and intestinal GIP and GLP-1 stores. These data indicate that GLP-1 but not GIP is a key mediator of beta cell mass expansion and related adaptations in pregnancy, triggered in part by generation of intra-islet GLP-1.
Resumo:
Purpose: In this study, we investigated the expression of the gene encoding beta-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including beta-galactosidase-1 (Glb1), beta-galactosidase-1-like (Glb1l), and beta-galactosidase-1-like protein 2 (Glb1l2).Methods: The structural features of Glb1l3 were assessed using bioinformatic tools. mRNA expression of Glb-related genes was investigated by oligonucleotide microarray, real-time PCR, and reverse transcription (RT) -PCR. The localized expression of Glb1l3 was assessed by combined in situ hybridization and immunohistochemistry.Results: Glb1l3 was the only Glb-related member strongly downregulated in Rpe65(-/-) retinas before the onset and during progression of the disease. Glb1l3 mRNA was only expressed in the retinal layers and the RPE/choroid. The other Glb-related genes were ubiquitously expressed in different ocular tissues, including the cornea and lens. In the healthy retina, expression of Glb1l3 was strongly induced during postnatal retinal development; age-related increased expression persisted during adulthood and aging.Conclusions: These data highlight early-onset downregulation of Glb1l3 in Rpe65-related disease. They further indicate that impaired expression of Glb1l3 is mostly due to the absence of the chromophore 11-cis retinal, suggesting that Rpe65 deficiency may have many metabolic consequences in the underlying neuroretina.
Resumo:
The effect of exendin-(9-39), a described antagonist of the glucagon-like peptide-1 (GLP-1) receptor, was evaluated on the formation of cAMP- and glucose-stimulated insulin secretion (GSIS) by the conditionally immortalized murine betaTC-Tet cells. These cells have a basal intracellular cAMP level that can be increased by GLP-1 with an EC50 of approximately 1 nM and can be decreased dose dependently by exendin-(9-39). This latter effect was receptor dependent, as a beta-cell line not expressing the GLP-1 receptor was not affected by exendin-(9-39). It was also not due to the endogenous production of GLP-1, because this effect was observed in the absence of detectable preproglucagon messenger RNA levels and radioimmunoassayable GLP-1. Importantly, GSIS was shown to be sensitive to this basal level of cAMP, as perifusion of betaTC-Tet cells in the presence of exendin-(9-39) strongly reduced insulin secretion. This reduction of GSIS, however, was observed only with growth-arrested, not proliferating, betaTC-Tet cells; it was also seen with nontransformed mouse beta-cells perifused in similar conditions. These data therefore demonstrated that 1) exendin-(9-39) is an inverse agonist of the murine GLP-1 receptor; 2) the decreased basal cAMP levels induced by this peptide inhibit the secretory response of betaTC-Tet cells and mouse pancreatic islets to glucose; 3) as this effect was observed only with growth-arrested cells, this indicates that the mechanism by which cAMP leads to potentiation of insulin secretion is different in proliferating and growth-arrested cells; and 4) the presence of the GLP-1 receptor, even in the absence of bound peptide, is important for maintaining elevated intracellular cAMP levels and, therefore, the glucose competence of the beta-cells.
Resumo:
In insulin-secreting cells, cytokines activate the c-Jun N-terminal kinase (JNK), which contributes to a cell signaling towards apoptosis. The JNK activation requires the presence of the murine scaffold protein JNK-interacting protein 1 (JIP-1) or human Islet-brain 1(IB1), which organizes MLK3, MKK7 and JNK for proper signaling specificity. Here, we used adenovirus-mediated gene transfer to modulate IB1/JIP-1 cellular content in order to investigate the contribution of IB1/JIP-1 to beta-cell survival. Exposure of the insulin-producing cell line INS-1 or isolated rat pancreatic islets to cytokines (interferon-gamma, tumor necrosis factor-alpha and interleukin-1beta) induced a marked reduction of IB1/JIP-1 content and a concomitant increase in JNK activity and apoptosis rate. This JNK-induced pro-apoptotic program was prevented in INS-1 cells by overproducing IB1/JIP-1 and this effect was associated with inhibition of caspase-3 cleavage. Conversely, reducing IB1/JIP-1 content in INS-1 cells and isolated pancreatic islets induced a robust increase in basal and cytokine-stimulated apoptosis. In heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene, the reduction in IB1/JIP-1 content in happloinsufficient isolated pancreatic islets was associated with an increased JNK activity and basal apoptosis. These data demonstrate that modulation of the IB1-JIP-1 content in beta cells is a crucial regulator of JNK signaling pathway and of cytokine-induced apoptosis.
Resumo:
Ischemic acute renal failure is characterized by damages to the proximal straight tubule in the outer medulla. Lesions include loss of polarity, shedding into the tubule lumen, and eventually necrotic or apoptotic death of epithelial cells. It was recently shown that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) increases keratinocyte survival after an inflammatory reaction. Therefore, whether PPARbeta/delta could contribute also to the control of tubular epithelium death after renal ischemia/reperfusion was tested. It was found that PPARbeta/delta+/- and PPARbeta/delta-/- mutant mice exhibited much greater kidney dysfunction and injury than wild-type counterparts after a 30-min renal ischemia followed by a 36-h reperfusion. Conversely, wild-type mice that were given the specific PPARbeta/delta ligand L-165041 before renal ischemia were completely protected against renal dysfunction, as indicated by the lack of rise in serum creatinine and fractional excretion of Na+. This protective effect was accompanied by a significant reduction in medullary necrosis, apoptosis, and inflammation. On the basis of in vitro studies, PPARbeta/delta ligands seem to exert their role by activating the antiapoptotic Akt signaling pathway and, unexpectedly, by increasing the spreading of tubular epithelial cells, thus limiting potentially their shedding and anoikis. These results point to PPARbeta/delta as a remarkable new target for preconditioning strategies.
Resumo:
The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprin beta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprin beta. In chicken tenascin-C, meprin beta processed all three major splicing variants by removal of 10 kDa N-terminal and 38 kDa C-terminal peptides, leaving a large central part of subunits intact. IN similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15 kDa) and two C-terminal fragments (40 and 55 kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprin beta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprin beta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprin beta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprin beta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprin beta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nutrient ingestion triggers a complex hormonal response aimed at stimulating glucose utilization in liver, muscle and adipose tissue to minimize the raise in blood glucose levels. Insulin secretion by pancreatic beta cells plays a major role in this response. Although the beta cell secretory response is mainly controlled by blood glucose levels, gut hormones secreted in response to food intake have an important role in potentiating glucose-stimulated insulin secretion. These gluco-incretin hormones are GLP-1 (glucagon-like peptide-1) and GIP (gluco-dependent insulinotropic polypeptide). Their action on pancreatic beta cells depends on binding to specific G-coupled receptors linked to activation of the adenylyl cyclase pathway. In addition to their effect on insulin secretion both hormones also stimulate insulin production at the transcriptional and translational level and positively regulate beta cell mass. Because the glucose-dependent insulinotropic action of GLP-1 is preserved in type 2 diabetic patients, this peptide is now developed as a novel therapeutic drug for this disease.
Resumo:
Transforming growth factor beta (TGF-beta) has been shown to be a central immunomodulator used by leishmaniae to escape effective mechanisms of protection in human and murine infections with these parasites. However, all the information is derived from studies of established infection, while little is known about TGF-beta production in response to Leishmania stimulation in healthy subjects. In this study, TGF-beta1 production was demonstrated in peripheral blood mononuclear cells from healthy subjects never exposed to leishmaniae in response to live Leishmania guyanensis, and the TGF-beta1-producing cells were described as a distinct subpopulation of CD4(+) CD25(+) regulatory T cells. The suppressive properties of CD4(+) CD25(+) T cells were demonstrated in vitro by their inhibition of production of interleukin 2 (IL-2) and IL-10 by CD4(+) CD25(-) T cells in the presence of either anti-CD3 or L. guyanensis. Although neutralization of TGF-beta1 did not reverse the suppressive activity of CD4(+) CD25(+) T cells activated by anti-CD3, it reversed the suppressive activity of CD4(+) CD25(+) T cells activated by L. guyanensis. Altogether our data demonstrated that TGF-beta1 is involved in the suppressive activity of L. guyanensis-stimulated CD4(+) CD25(+) T cells from healthy controls.
Resumo:
AIMS/HYPOTHESIS: Pro-atherogenic and pro-oxidant, oxidised LDL trigger adverse effects on pancreatic beta cells, possibly contributing to diabetes progression. Because oxidised LDL diminish the expression of genes regulated by the inducible cAMP early repressor (ICER), we investigated the involvement of this transcription factor and of oxidative stress in beta cell failure elicited by oxidised LDL. METHODS: Isolated human and rat islets, and insulin-secreting cells were cultured with human native or oxidised LDL or with hydrogen peroxide. The expression of genes was determined by quantitative real-time PCR and western blotting. Insulin secretion was monitored by EIA kit. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Exposure of beta cell lines and islets to oxidised LDL, but not to native LDL raised the abundance of ICER. Induction of this repressor by the modified LDL compromised the expression of important beta cell genes, including insulin and anti-apoptotic islet brain 1, as well as of genes coding for key components of the secretory machinery. This led to hampering of insulin production and secretion, and of cell survival. Silencing of this transcription factor by RNA interference restored the expression of its target genes and alleviated beta cell dysfunction and death triggered by oxidised LDL. Induction of ICER was stimulated by oxidative stress, whereas antioxidant treatment with N-acetylcysteine or HDL prevented the rise of ICER elicited by oxidised LDL and restored beta cell functions. CONCLUSIONS/INTERPRETATION: Induction of ICER links oxidative stress to beta cell failure caused by oxidised LDL and can be effectively abrogated by antioxidant treatment.
Resumo:
Introduction : Les particules de HDL (High Density Lipoprotein) ont des fonctions diverses notamment en raison de leur structure très hétérogène. Tout d'abord, les HDLs assurent le transport du cholestérol de la périphérie vers le foie mais sont également dotées de nombreuses vertus protectrices. Un grand nombre d'études démontre les mécanismes de protection des HDL sur les cellules endothéliales. Sachant que les patients diabétiques ont ses niveaux bas de HDL, le but de cette étude est d'investiguer les mécanismes moléculaires de protection sur la cellule beta pancréatique. Résultats : Une étude « microarray » nous a permis d'obtenir une liste de gènes régulés par le stress, comme la privation de sérum, en présence ou en absence de HDL. Parmi ces gènes, nous nous sommes particulièrement intéressés à un répresseur de la synthèse protéique « cap » -dépendante, 4EBP1. Dans notre étude transcriptomique, les niveaux d'ARNm de 4E-BP1 augmentaient de 30þ% dans des conditions sans sérum alors que les HDLs bloquaient cette élévation. Au niveau protéique, les niveaux totaux de 4EBP1 étaient augmentés dans les conditions de stress et cette élévation était contrée par les HDLs. D'autres expériences de transfection ou d'infection de 4E-BP1 ont montrés que cette protéine était capable d'induire l'apoptose dans les cellules beta, imitant ainsi l'effet de la privation de sérum. Afin de déterminer le rôle direct de 4E-BP1 dans la mort cellulaire, ses niveaux ont été réduits par interférence ARN. Le niveau de mort cellulaire induit par l'absence de sérum était moins élevé dans des cellules à taux réduits de 4EBP1 par RNAi que dans des cellules contrôle. Conclusion : Ces données montrent que les HDL protègent les cellules beta suite à différents stress et que 4E-BP1 est une des protéines pro-apoptotiques inhibées par les HDL. 4E-BP1 est capable d'induire la mort cellulaire dans les cellules bêta et cette réponse peut-être réduite en diminuant l'expression de cette protéine. Nos données suggèrent que 4E-BP1 est une cible potentielle pour le traitement du diabète.