78 resultados para adhesive disk
Resumo:
Purpose: Pathologic choroidal neovascularizations (CNV) are implicated in the wet form of age-related macular degeneration (ARMD). Abnormal vessel growth is also observed in disease when hypoxia and/or inflammation occur. Our goal is to establish a standard protocol of laser-induced CNV in mice that have different levels of pigmentation to identify the most reliable animal model.Methods: CNV was induced by 4 burns around the optic disk, using a green argon laser (100μm diameter spot size; 0,05 sec. duration) in C57/Bl6, DBA/1 and Balb/c to ascertain the efficacy of the method in function of retina pigmentation. Five different intensities were tested and Bruch's membrane disruption was identified by the appearance of a bubble at the site of photocoagulation. Fluorescein angiographies (FA) were undertaken 14 days post lesion and CNV area was quantified by immunohistochemistry on cryosections.Results: CNV retina area was related to spot intensity after laser injury. While 180mW and 200mW do not induce reliable CNV (respectively 27.85±0.35% and 29±1.67% of the retina surface), 260mW is required to induce 51,07±8.52% of CNV in C57/Bl6 mice. For the DBA/1 strain, less pigmented, 200mW was sufficient to induce 49.35±3.9% of CNV, indicating that lower intensity are required to induce CNV. Furthermore, an intensity of 180mW induced greater CNV (35.55±6.01%) than in C57/Bl6 mice. Nevertheless, laser did not induce reproducible 50% CNV in Balb/c albino mice for all intensities tested. Isolectin-B4 and GFAP stainings revealed neovessel formation and photoreceptor (PR) degeneration at the impact site. The presence of glia was observed throughout all the retinal layers and angiograms showed fluorescein leakage in pigmented mice.Conclusions: The establishment of a standard protocol to induce CNV and subsequent PR degeneration is of prime importance for the use of the laser-induced CNV model and will allow to evaluate the therapeutic potency of agents to prevent CNV and retinal degeneration.
Resumo:
Background: Negative pressure wound treatment is increasingly used through a Vacuum-Assisted Closure (VAC) device in complex wound situations. For this purpose, sterile polyurethane (PU) and polyvinyl alcohol (PVA) foam dressings are fitted to the wound size and covered with an adhesive drape to create an airtight seal. Little information exists about the type and quantity of microorganisms within the foams. Therefore, we investigated VAC foams after removal from the wound using a validated method (sonication) to detect the bacterial bioburden in the foam consisting as microbial biofilms.Methods: We prospectively included VAC foams (PU and PVA, KCI, Rümlamg, Switzerland) without antibacterial additions (e.g. silver), which were removed from wounds in patients with chronic ulcers from January 2007 through December 2008. Excluded were patients with acute wound infection, necrotizing fasciitis, underlying osteomyelitis or implant. Removed foams from regular changes of dressing were aseptically placed in a container with 100 ml sterile Ringer's solution. Within 4 hours after removal, foams were sonicated for 5 min at 40 kHz (as described in NEJM 2007;357:654). The resulting sonication fluid was cultured at 37°C on aerobic blood agar plates for 5 days. Microbes were quantified as No. of colony-forming units (CFU)/ml sonication fluid and identified to the species level.Results: A total of 68 foams (38 PU and 30 PVA) from 55 patients were included in the study (median age 71 years; range 33-88 years, 57% were man). Foams were removed from the following anatomic sites: sacrum (n=29), ischium (n=18), heel (n=13), calves (n=6) and ankle (n=2). The median duration of being in place was 3 days (range, 1-8 days). In all 68 foams, bacteria were found in large quantities (median 105 CFU/ml, range 102-7 CFU/ml sonication fluid. No differences were found between PU and PVA foams. One type of organisms was found in 11 (16%), two in 17 (24%) and 3 or more in 40 (60%) foams. Gram-negative rods (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa) were isolated in 70%, followed by Staphylococcus aureus (20%), koagulase-negative staphylococci, streptococci (8%), and enterococci (2%).Conclusion: With sonication, a high density of bacteria present in VAC foams was demonstrated after a median of 3 days. Future studies are needed to investigate whether antimicrobial-impregnated foams can reduce the bacterial load in foams and potentially improve wound healing.
Resumo:
Injury of an arterial vessel wall acutely triggers a multifaceted process of thrombus formation, which is dictated by the high-shear flow conditions in the artery. In this overview, we describe how the classical concept of arterial thrombus formation and vascular occlusion, driven by platelet activation and fibrin formation, can be extended and fine-tuned. This has become possible because of recent insight into the mechanisms of: (i) platelet-vessel wall and platelet-platelet communication, (ii) autocrine platelet activation, and (iii) platelet-coagulation interactions, in relation to blood flow dynamics. We list over 40 studies with genetically modified mice showing a role of platelet and plasma proteins in the control of thrombus stability after vascular injury. These include multiple platelet adhesive receptors and other junctional molecules, components of the ADP receptor signalling cascade to integrin activation, proteins controlling platelet shape, and autocrine activation processes, as well as multiple plasma proteins binding to platelets and proteins of the intrinsic coagulation cascade. Regulatory roles herein of the endothelium and other blood cells are recapitulated as well. Patient studies support the contribution of platelet- and coagulation activation in the regulation of thrombus stability. Analysis of the factors determining flow-dependent thrombus stabilization and embolus formation in mice will help to understand the regulation of this process in human arterial disease.
Resumo:
Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death.
Resumo:
Pollination syndromes involve convergent evolution towards phenotypes composed of specific scents, colours or floral morphologies that attract or restrict pollinator access to reward. How these traits might influence the distributions of plant species in interaction with pollinators has rarely been investigated. We sampled 870 vegetation plots in the western Swiss Alps and classified the plant species into seven blossom types according to their floral morphology (wind, disk, funnel, tube, bilabiate, head or brush). We investigated the environmental features of plots with functional diversity (FD) lower than expected by chance alone to detect potential pollination filtering and related the proportions of the seven blossom types to a combination of environmental descriptors. From these results, we inferred the potential effect of the pollinator on the spatial distribution of plant species. The vegetation plots with significantly lower FD of blossom types than expected by chance were found at higher altitudes, and the proportions of blossom types were strongly patterned along the same gradient. These results support a biotic filtering effect on plant species assemblages through pollination: disk blossoms became dominant at higher altitudes, resulting in a lower FD. In harsh conditions at high altitudes, pollinators usually decrease in activity, and the openness of the disk blossom grants access to any available pollinator. Inversely, bilabiate blossoms, which are mostly pollinated by bees, were more abundant at lower elevations, which are characterised by greater abundance and diversity of bees. Generalisation through openness of the blossom could be advantageous at high elevations, while specialisation could be a successful alternative strategy at lower elevations. The approach used in this study is purely correlative, and further investigations should be conducted to infer the nature of the causal relationship between plant and pollinator distributions.
Resumo:
Fibrin has been long used clinically for hemostasis and sealing, yet extension of use in other applications has been limited due to its relatively rapid resorption in vivo, even with addition of aprotinin or other protease inhibitors. We report an engineered aprotinin variant that can be immobilized within fibrin and thus provide extended longevity. When recombinantly fused to a transglutaminase substrate domain from α(2)-plasmin inhibitor (α(2)PI(1-8)), the resulting variant, aprotinin-α(2)PI(1-8), was covalently crosslinked into fibrin matrices during normal thrombin/factor XIIIa-mediated polymerization. Challenge with physiological plasmin concentrations revealed that aprotinin-α(2)PI(1-8)-containing matrices retained 78% of their mass after 3 wk, whereas matrices containing wild type (WT) aprotinin degraded completely within 1 wk. Plasmin challenge of commercial sealants Omrixil and Tisseel, supplemented with aprotinin-α(2)PI(1-8) or WT aprotinin, showed extended longevity as well. When seeded with human dermal fibroblasts, aprotinin-α(2)PI(1-8)-supplemented matrices supported cell growth for at least 33% longer than those containing WT aprotinin. Subcutaneously implanted matrices containing aprotinin-α(2)PI(1-8) were detectable in mice for more than twice as long as those containing WT aprotinin. We conclude that our engineered recombinant aprotinin variant can confer extended longevity to fibrin matrices more effectively than WT aprotinin in vitro and in vivo.
Resumo:
Desmosomes are intercellular adhesive complexes that anchor the intermediate filament cytoskeleton to the cell membrane in epithelia and cardiac muscle cells. The desmosomal component desmoplakin plays a key role in tethering various intermediate filament networks through its C-terminal plakin repeat domain. To gain better insight into the cytoskeletal organization of cardiomyocytes, we investigated the association of desmoplakin with desmin by cell transfection, yeast two-hybrid, and/or in vitro binding assays. The results indicate that the association of desmoplakin with desmin depends on sequences within the linker region and C-terminal extremity of desmoplakin, where the B and C subdomains contribute to efficient binding; a potentially phosphorylatable serine residue in the C-terminal extremity of desmoplakin affects its association with desmin; the interaction of desmoplakin with non-filamentous desmin requires sequences contained within the desmin C-terminal rod portion and tail domain in yeast, whereas in in vitro binding studies the desmin tail is dispensable for association; and mutations in either the C-terminus of desmoplakin or the desmin tail linked to inherited cardiomyopathy seem to impair desmoplakindesmin interaction. These studies increase our understanding of desmoplakin-intermediate filament interactions, which are important for maintenance of cytoarchitecture in cardiomyocytes, and give new insights into the molecular basis of desmoplakin- and desmin-related human diseases.
Resumo:
BACKGROUND: Endoresection of choroidal melanoma may offer the best hope of conserving vision in some patients but is controversial because of concerns regarding iatrogenic tumour dissemination. METHODS: Retrospective, non-randomised study of consecutive patients who underwent endoresection for choroidal melanoma at the Liverpool Ocular Oncology Centre between 1996 and 2010. RESULTS: The study included 71 patients with a mean age of 58.7 years. The tumour extended within 2 disc diameters of the optic disc in 46 (65%) eyes, involving the disc in 24 (34%) eyes. The mean largest basal tumour diameter and tumour thickness were 9.5 mm and 4.4 mm, respectively. The median follow-up was 4.1 years. The visual acuity at the latest follow-up was better than 6/30 in 31% eyes. The main causes of visual loss were foveal excision, rhegmatogenous retinal detachment (RD) and proliferative vitreo-retinopathy (PVR). Local recurrence developed in two patients (3%), who were treated by enucleation and proton beam radiotherapy, respectively. RD occurred in 16 cases (22%). Three (4%) eyes were enucleated, two because of PVR and one because of local tumour recurrence. Five patients died of metastatic disease. CONCLUSIONS: Endoresection achieved high rates of local tumour control. This operation would seem to be a useful alternative to radiotherapy as a means of conserving vision in eyes with juxtapapillary melanoma.
Resumo:
RESUME L'angiogénèse tumorale est un processus essentiel au développement des tumeurs. Les intégrines, molécules d'adhésions transmembranaires, sont d'importants effecteurs de l'angiogenèse. En permettant l'adhésion à la matrice extra-cellulaire, les intégrines transmettant des signaux de survie, de migration, et de prolifération. Le facteur de nécrose tumorale α (TNFα) est utilisé pour le traitement régional de cancers chez l'homme. II agit en détruisant sélectivement les vaisseaux angiogéniques. Cependant, son administration systémique chez l'homme est limitée par les réactions de vaso-dilatation sévères qu'il provoque. Le but de mon travail fut de rechercher des conditions permettant la sensibilisation des cellules endothéliales au TNFα et qui pourraient être applicables en clinique, ceci afin d'accroître l'efficacité de cette molécule. Nous avons testé la possibilité d'interférer avec les signaux de survie provenant des intégrines. Pour cela, des cellules endothéliales furent cultivées dans des conditions d'adhésion ou en suspension, ou alors exposées dans des conditions d'adhésion au zoledronate (biphosphonate contenant du nitrogène). Dans ces conditions, les effets du TNFα sur les cellules endothéliales furent étudiés, en particulier l'induction de la mort cellulaire. Dans ce travail, nous montrons que le zoledronate sensibilise les cellules endothéliales à la nécrose induite par TNFα. Cet effet s'accompagne de l'inhibition de la phosphorylation de FAK, PKB, et JNK, ainsi que de l'inhibition de la prénylation des protéines. En revanche, l'activation de NF-kB et p38 n'est pas perturbée. La restoration de la prénylation des protéines empêche la mort des HUVEC traitées par zoledronate et TNFα, et rétablit la phosphorylation de FAK, PKB, et JNK. Des essais d'angiogénèse in vivo montrent que le zoledronate inhibe l'angiogénèse induite par FGF-2. Le zoledronate encapsulé dans des liposomes permet de ralentir la croissance tumorale et synergise avec le TNFα en l'inhibant. L'inihibtion de la prénylation des protéines est un des mécanismes de sensibilisation du zoledronate au TNFα. In vivo, la synergie de leur association sur la croissance tumorale est efficace. Ces résultats encouragent la poursuite de l'étude des effets de ces deux drogues sur la croissance tumorale. SUMMARY The formation of tumor-associated vessels is essential for tumor progression. Cell adhesion molecules of the integrin family are important mediators of angiogenesis, by providing adhesive signals necessary for endothelial cell migration, proliferation and survival. Anti-angiogenic therapies are currently considered as highly promising in the treatment of human cancer. Tumor Necrosis Factor α (TNFα) is used for the regional treatment of human cancer, whose mechanisms of action involved selective disruption of angiogenic tumor vessels. Systemic administration of TNFα in humans, however, induces a severe inflammatory condition that prevents its use far the treatments of tumors localized outside of limbs. The aim of my work was to find strategies to sensitize angiogenic endothelial cells to TNFα-induced death, which could be potentially translated into clinical setting to improve the therapeutic efficacy of TNFα. We specifically tested the hypothesis whether interference with integrin-mediated adhesion and signaling may sensitize endothelial cells to TNFα-induced death. To test this hypothesis we cultured endothelial cells (EC) under conditions of cell-matrix or cell-cell adhesion or exposed matrix-adherent EC to the nitrogen-containing bisphosphonate zoledronate, and characterized the effect on TNFα-mediated signaling events and cell death. We show that zoledronate sensitizes HUVEC to TNFα-induced necrosis-like programmed cell death. This effect was associated with suppression of sustained phosphorylation of PKB and JNK and decreased protein prenylation, whereas TNFα-induced activation of NF-kB and p38 were not inhibited. Restoration of protein prenylation rescued HUVEC from zoledronate and TNFα-induced death, and restored FAK, PKB and JNK phosphorylation. By using in vivo angiogenesis assay we showed that zoledronate suppressed FGF-2-induced angiogenesis. Liposome-encapulated zoledronate partially inhibited tumor growth and synergized with TNFα to fully suppress tumor growth. Taken together, this work has identified protein prenylation as a mechanisms by which zoledronate sensitizes endothelial cells to TNFα-induced death in vitro and provides initial evidence that zoledronate synergizes with TNFα in vivo resulting in improved anti-tumor activity. These results warrant further study of the anti-tumor effects of zoledronate and TNFα and should be further studies in view of their clinical relevance.
Resumo:
The infection of an intervertebral disk is a serious condition. The diagnosis often is elusive and difficult to make. It is imperative to have appropriate microbiologic specimens before the initiation of treatment. We report the case of a 51-year-old woman with lumbar spondylodiscitis caused by infection after the placement of an epidural catheter for postoperative analgesia. A spinal magnetic resonance imaging (MRI) scan confirmed the diagnosis, but computed tomography (CT)-guided fine-needle biopsy did not yield adequate material for a microbiologic diagnosis. Laparoscopic biopsies of the involved disk provided good specimens and a diagnosis of Propionibacterium acnes infection. We believe that this minimally invasive procedure should be performed when CT-guided fine-needle biopsy fails to yield a microbiologic diagnosis in spondylodiscitis.
Resumo:
Vertebroplasty and kyphoplasty have been reported to alter the mechanical behavior of the treated and adjacent-level segments, and have been suggested to increase the risk for adjacent-level fractures. The intervertebral disc (IVD) plays an important role in the mechanical behavior of vertebral motion segments. Comparisons between normal and degenerative IVD motion segments following cement augmentation have yet to be reported. A microstructural finite element model of a degenerative IVD motion segment was constructed from micro-CT images. Microdamage within the vertebral body trabecular structure was used to simulate a slightly (I = 83.5% of intact stiffness), moderately (II = 57.8% of intact stiffness), and severely (III = 16.0% of intact stiffness) damaged motion segment. Six variable geometry single-segment cement repair strategies (models A-F) were studied at each damage level (I-III). IVD and bone stresses, and motion segment stiffness, were compared with the intact and baseline damage models (untreated), as well as, previous findings using normal IVD models with the same repair strategies. Overall, small differences were observed in motion segment stiffness and average stresses between the degenerative and normal disc repair models. We did however observe a reduction in endplate bulge and a redistribution in the microstructural tissue level stresses across both endplates and in the treated segment following early stage IVD degeneration. The cement augmentation strategy placing bone cement along the periphery of the vertebra (model E) proved to be the most advantageous in treating the degenerative IVD models by showing larger reductions in the average bone stresses (vertebral and endplate) as compared to the normal IVD models. Furthermore, only this repair strategy, and the complete cement fill strategy (model F), were able to restore the slightly damaged (I) motion segment stiffness above pre-damaged (intact) levels. Early stage IVD degeneration does not have an appreciable effect in motion segment stiffness and average stresses in the treated and adjacent-level segments following vertebroplasty and kyphoplasty. Placing bone cement in the periphery of the damaged vertebra in a degenerative IVD motion segment, minimizes load transfer, and may reduce the likelihood of adjacent-level fractures.
Resumo:
This article summarizes the available evidence on the management of patients with subacute or chronic low back pain. The largest part is devoted to nonspecific low back pain but the models of spinal stenosis and disk herniation/sciatica are also specifically addressed. The authors point out the limited evidence available and the importance of a tailored approach for the individual patient. As the effect sizes of most therapies are rather small (close to that of a placebo), patients' preferences and other variables important for individualized management are highlighted. The task for the practitioner is difficult and awareness of this is important. Some speculation regarding potential future ways of improving patient care are presented.
Resumo:
STUDY DESIGN: Double-blind, placebo-controlled randomized clinical trial. OBJECTIVE: To assess the efficacy of 1 preoperative 1.5 g dose of cefuroxime in preventing surgical site infection after surgery for herniated disc. SUMMARY OF BACKGROUND DATA: Antibiotic prophylaxis was only tested in nonconclusive trials in this setting. METHODS: The study was conducted in 2 university hospitals in Switzerland. Patients were assessed for occurrence of surgical site infection (defined by the criteria of the Centers for Diseases Control and Prevention), other infections, or adverse events up to 6 months after surgery. Outcome measures were compared in a univariate, per-protocol analysis. RESULTS: Baseline characteristics were similar in patients allocated to cefuroxime (n = 613) or placebo (n = 624). Eight (1.3%) patients in the cefuroxime group and 18 patients (2.8%) in the placebo group developed a surgical site infection (P = 0.073). A diagnosis of spondylodiscitis or epidural abscess was made in 9 patients in the placebo group, but none in the cefuroxime group (P < 0.01), which corresponded to a number necessary to treat of 69 patients to prevent one of these infections. There were no significant adverse events attributed to either cefuroxime or placebo. CONCLUSION: A single, preoperative dose of cefuroxime significantly reduces the risk of organ-space infection, most notably spondylodiscitis, after surgery for herniated disc.