68 resultados para Vision-based row tracking algorithm
Resumo:
The care for a patient with ulcerative colitis (UC) remains challenging despite the fact that morbidity and mortality rates have been considerably reduced during the last 30 years. The traditional management with intravenous corticosteroids was modified by the introduction of ciclosporin and infliximab. In this review, we focus on the treatment of patients with moderate to severe UC. Four typical clinical scenarios are defined and discussed in detail. The treatment recommendations are based on current literature, published guidelines and reviews, and were discussed at a consensus meeting of Swiss experts in the field. Comprehensive treatment algorithms were developed, aimed for daily clinical practice.
Resumo:
Abstract This thesis proposes a set of adaptive broadcast solutions and an adaptive data replication solution to support the deployment of P2P applications. P2P applications are an emerging type of distributed applications that are running on top of P2P networks. Typical P2P applications are video streaming, file sharing, etc. While interesting because they are fully distributed, P2P applications suffer from several deployment problems, due to the nature of the environment on which they perform. Indeed, defining an application on top of a P2P network often means defining an application where peers contribute resources in exchange for their ability to use the P2P application. For example, in P2P file sharing application, while the user is downloading some file, the P2P application is in parallel serving that file to other users. Such peers could have limited hardware resources, e.g., CPU, bandwidth and memory or the end-user could decide to limit the resources it dedicates to the P2P application a priori. In addition, a P2P network is typically emerged into an unreliable environment, where communication links and processes are subject to message losses and crashes, respectively. To support P2P applications, this thesis proposes a set of services that address some underlying constraints related to the nature of P2P networks. The proposed services include a set of adaptive broadcast solutions and an adaptive data replication solution that can be used as the basis of several P2P applications. Our data replication solution permits to increase availability and to reduce the communication overhead. The broadcast solutions aim, at providing a communication substrate encapsulating one of the key communication paradigms used by P2P applications: broadcast. Our broadcast solutions typically aim at offering reliability and scalability to some upper layer, be it an end-to-end P2P application or another system-level layer, such as a data replication layer. Our contributions are organized in a protocol stack made of three layers. In each layer, we propose a set of adaptive protocols that address specific constraints imposed by the environment. Each protocol is evaluated through a set of simulations. The adaptiveness aspect of our solutions relies on the fact that they take into account the constraints of the underlying system in a proactive manner. To model these constraints, we define an environment approximation algorithm allowing us to obtain an approximated view about the system or part of it. This approximated view includes the topology and the components reliability expressed in probabilistic terms. To adapt to the underlying system constraints, the proposed broadcast solutions route messages through tree overlays permitting to maximize the broadcast reliability. Here, the broadcast reliability is expressed as a function of the selected paths reliability and of the use of available resources. These resources are modeled in terms of quotas of messages translating the receiving and sending capacities at each node. To allow a deployment in a large-scale system, we take into account the available memory at processes by limiting the view they have to maintain about the system. Using this partial view, we propose three scalable broadcast algorithms, which are based on a propagation overlay that tends to the global tree overlay and adapts to some constraints of the underlying system. At a higher level, this thesis also proposes a data replication solution that is adaptive both in terms of replica placement and in terms of request routing. At the routing level, this solution takes the unreliability of the environment into account, in order to maximize reliable delivery of requests. At the replica placement level, the dynamically changing origin and frequency of read/write requests are analyzed, in order to define a set of replica that minimizes communication cost.
Resumo:
INTRODUCTION: Optimal identification of subtle cognitive impairment in the primary care setting requires a very brief tool combining (a) patients' subjective impairments, (b) cognitive testing, and (c) information from informants. The present study developed a new, very quick and easily administered case-finding tool combining these assessments ('BrainCheck') and tested the feasibility and validity of this instrument in two independent studies. METHODS: We developed a case-finding tool comprised of patient-directed (a) questions about memory and depression and (b) clock drawing, and (c) the informant-directed 7-item version of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE). Feasibility study: 52 general practitioners rated the feasibility and acceptance of the patient-directed tool. Validation study: An independent group of 288 Memory Clinic patients (mean ± SD age = 76.6 ± 7.9, education = 12.0 ± 2.6; 53.8% female) with diagnoses of mild cognitive impairment (n = 80), probable Alzheimer's disease (n = 185), or major depression (n = 23) and 126 demographically matched, cognitively healthy volunteer participants (age = 75.2 ± 8.8, education = 12.5 ± 2.7; 40% female) partook. All patient and healthy control participants were administered the patient-directed tool, and informants of 113 patient and 70 healthy control participants completed the very short IQCODE. RESULTS: Feasibility study: General practitioners rated the patient-directed tool as highly feasible and acceptable. Validation study: A Classification and Regression Tree analysis generated an algorithm to categorize patient-directed data which resulted in a correct classification rate (CCR) of 81.2% (sensitivity = 83.0%, specificity = 79.4%). Critically, the CCR of the combined patient- and informant-directed instruments (BrainCheck) reached nearly 90% (that is 89.4%; sensitivity = 97.4%, specificity = 81.6%). CONCLUSION: A new and very brief instrument for general practitioners, 'BrainCheck', combined three sources of information deemed critical for effective case-finding (that is, patients' subject impairments, cognitive testing, informant information) and resulted in a nearly 90% CCR. Thus, it provides a very efficient and valid tool to aid general practitioners in deciding whether patients with suspected cognitive impairments should be further evaluated or not ('watchful waiting').
Resumo:
PURPOSE: To investigate magnetization transfer (MT) effects as a new source of contrast for imaging and tracking of peripheral foot nerves. MATERIALS AND METHODS: Two sets of 3D spoiled gradient-echo images acquired with and without a saturation pulse were used to generate MT ratio (MTR) maps of 260 μm in-plane resolution for eight volunteers at 3T. Scan parameters were adjusted to minimize signal loss due to T2 dephasing, and a dedicated coil was used to improve the inherently low signal-to-noise ratio of small voxels. Resulting MTR values in foot nerves were compared with those in surrounding muscle tissue. RESULTS: Average MTR values for muscle (45.5 ± 1.4%) and nerve (21.4 ± 3.1%) were significantly different (P < 0.0001). In general, the difference in MTR values was sufficiently large to allow for intensity-based segmentation and tracking of foot nerves in individual subjects. This procedure was termed MT-based 3D visualization. CONCLUSION: The MTR serves as a new source of contrast for imaging of peripheral foot nerves and provides a means for high spatial resolution tracking of these structures. The proposed methodology is directly applicable on standard clinical MR scanners and could be applied to systemic pathologies, such as diabetes.
Resumo:
BACKGROUND: Tests for recent infections (TRIs) are important for HIV surveillance. We have shown that a patient's antibody pattern in a confirmatory line immunoassay (Inno-Lia) also yields information on time since infection. We have published algorithms which, with a certain sensitivity and specificity, distinguish between incident (< = 12 months) and older infection. In order to use these algorithms like other TRIs, i.e., based on their windows, we now determined their window periods. METHODS: We classified Inno-Lia results of 527 treatment-naïve patients with HIV-1 infection < = 12 months according to incidence by 25 algorithms. The time after which all infections were ruled older, i.e. the algorithm's window, was determined by linear regression of the proportion ruled incident in dependence of time since infection. Window-based incident infection rates (IIR) were determined utilizing the relationship 'Prevalence = Incidence x Duration' in four annual cohorts of HIV-1 notifications. Results were compared to performance-based IIR also derived from Inno-Lia results, but utilizing the relationship 'incident = true incident + false incident' and also to the IIR derived from the BED incidence assay. RESULTS: Window periods varied between 45.8 and 130.1 days and correlated well with the algorithms' diagnostic sensitivity (R(2) = 0.962; P<0.0001). Among the 25 algorithms, the mean window-based IIR among the 748 notifications of 2005/06 was 0.457 compared to 0.453 obtained for performance-based IIR with a model not correcting for selection bias. Evaluation of BED results using a window of 153 days yielded an IIR of 0.669. Window-based IIR and performance-based IIR increased by 22.4% and respectively 30.6% in 2008, while 2009 and 2010 showed a return to baseline for both methods. CONCLUSIONS: IIR estimations by window- and performance-based evaluations of Inno-Lia algorithm results were similar and can be used together to assess IIR changes between annual HIV notification cohorts.
Resumo:
A new method of measuring joint angle using a combination of accelerometers and gyroscopes is presented. The method proposes a minimal sensor configuration with one sensor module mounted on each segment. The model is based on estimating the acceleration of the joint center of rotation by placing a pair of virtual sensors on the adjacent segments at the center of rotation. In the proposed technique, joint angles are found without the need for integration, so absolute angles can be obtained which are free from any source of drift. The model considers anatomical aspects and is personalized for each subject prior to each measurement. The method was validated by measuring knee flexion-extension angles of eight subjects, walking at three different speeds, and comparing the results with a reference motion measurement system. The results are very close to those of the reference system presenting very small errors (rms = 1.3, mean = 0.2, SD = 1.1 deg) and excellent correlation coefficients (0.997). The algorithm is able to provide joint angles in real-time, and ready for use in gait analysis. Technically, the system is portable, easily mountable, and can be used for long term monitoring without hindrance to natural activities.
Resumo:
Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.
Resumo:
Dorsal and ventral pathways for syntacto-semantic speech processing in the left hemisphere are represented in the dual-stream model of auditory processing. Here we report new findings for the right dorsal and ventral temporo-frontal pathway during processing of affectively intonated speech (i.e. affective prosody) in humans, together with several left hemispheric structural connections, partly resembling those for syntacto-semantic speech processing. We investigated white matter fiber connectivity between regions responding to affective prosody in several subregions of the bilateral superior temporal cortex (secondary and higher-level auditory cortex) and of the inferior frontal cortex (anterior and posterior inferior frontal gyrus). The fiber connectivity was investigated by using probabilistic diffusion tensor based tractography. The results underscore several so far underestimated auditory pathway connections, especially for the processing of affective prosody, such as a right ventral auditory pathway. The results also suggest the existence of a dual-stream processing in the right hemisphere, and a general predominance of the dorsal pathways in both hemispheres underlying the neural processing of affective prosody in an extended temporo-frontal network.
Resumo:
PURPOSE: A number of microarray studies have reported distinct molecular profiles of breast cancers (BC), such as basal-like, ErbB2-like, and two to three luminal-like subtypes. These were associated with different clinical outcomes. However, although the basal and the ErbB2 subtypes are repeatedly recognized, identification of estrogen receptor (ER) -positive subtypes has been inconsistent. Therefore, refinement of their molecular definition is needed. MATERIALS AND METHODS: We have previously reported a gene expression grade index (GGI), which defines histologic grade based on gene expression profiles. Using this algorithm, we assigned ER-positive BC to either high-or low-genomic grade subgroups and compared these with previously reported ER-positive molecular classifications. As further validation, we classified 666 ER-positive samples into subtypes and assessed their clinical outcome. RESULTS: Two ER-positive molecular subgroups (high and low genomic grade) could be defined using the GGI. Despite tracking a single biologic pathway, these were highly comparable to the previously described luminal A and B classification and significantly correlated to the risk groups produced using the 21-gene recurrence score. The two subtypes were associated with statistically distinct clinical outcome in both systemically untreated and tamoxifen-treated populations. CONCLUSION: The use of genomic grade can identify two clinically distinct ER-positive molecular subtypes in a simple and highly reproducible manner across multiple data sets. This study emphasizes the important role of proliferation-related genes in predicting prognosis in ER-positive BC.
Resumo:
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.
Resumo:
Until recently, the hard X-ray, phase-sensitive imaging technique called grating interferometry was thought to provide information only in real space. However, by utilizing an alternative approach to data analysis we demonstrated that the angular resolved ultra-small angle X-ray scattering distribution can be retrieved from experimental data. Thus, reciprocal space information is accessible by grating interferometry in addition to real space. Naturally, the quality of the retrieved data strongly depends on the performance of the employed analysis procedure, which involves deconvolution of periodic and noisy data in this context. The aim of this article is to compare several deconvolution algorithms to retrieve the ultra-small angle X-ray scattering distribution in grating interferometry. We quantitatively compare the performance of three deconvolution procedures (i.e., Wiener, iterative Wiener and Lucy-Richardson) in case of realistically modeled, noisy and periodic input data. The simulations showed that the algorithm of Lucy-Richardson is the more reliable and more efficient as a function of the characteristics of the signals in the given context. The availability of a reliable data analysis procedure is essential for future developments in grating interferometry.
Resumo:
Computed Tomography (CT) represents the standard imaging modality for tumor volume delineation for radiotherapy treatment planning of retinoblastoma despite some inherent limitations. CT scan is very useful in providing information on physical density for dose calculation and morphological volumetric information but presents a low sensitivity in assessing the tumor viability. On the other hand, 3D ultrasound (US) allows a highly accurate definition of the tumor volume thanks to its high spatial resolution but it is not currently integrated in the treatment planning but used only for diagnosis and follow-up. Our ultimate goal is an automatic segmentation of gross tumor volume (GTV) in the 3D US, the segmentation of the organs at risk (OAR) in the CT and the registration of both modalities. In this paper, we present some preliminary results in this direction. We present 3D active contour-based segmentation of the eye ball and the lens in CT images; the presented approach incorporates the prior knowledge of the anatomy by using a 3D geometrical eye model. The automated segmentation results are validated by comparing with manual segmentations. Then, we present two approaches for the fusion of 3D CT and US images: (i) landmark-based transformation, and (ii) object-based transformation that makes use of eye ball contour information on CT and US images.
Resumo:
Multiple organization indices have been used to predict the outcome of stepwise catheter ablation in long-standing persistent atrial fibrillation (AF), however with limited success. Our study aims at developinginnovative organization indices from baseline ECG (i.e. during the procedure, before ablation) in orderto identify the site of AF termination by catheter ablation. Seventeen consecutive male patients (age60 ± 5 years, AF duration 7 ± 5 years) underwent a stepwise catheter ablation. Chest lead V6 was placedin the back (V6b). QRST cancelation was performed from chest leads V1 to V6b. Using an innovativeadaptive harmonic frequency tracking, two measures of AF organization were computed to quantify theharmonics components of ECG activity: (1) the adaptive phase difference variance (APD) between theAF harmonic components as a measure of AF regularity, and (2) and adaptive organization index (AOI)evaluating the cyclicity of the AF oscillations. Both adaptive indices were compared to indices computedusing a time-invariant approach: (1) ECG AF cycle length (AFCL), (2) the spectrum based organizationindex (OI), and (3) the time-invariant phase difference TIPD. Long-standing persistent AF was terminatedinto sinus rhythm or atrial tachycardia in 13/17 patients during stepwise ablation, 11 during left atriumablation (left terminated patients - LT), 2 during the right atrium ablation (right terminated patients -RT), and 4 were non terminated (NT) and required electrical cardioversion. Our findings showed that LTpatients were best separated from RT/NT before ablation by the duration of sustained AF and by AOI onchest lead V1 and APD from the dorsal lead V6b as compared to ECG AFCL, OI and TIPD, respectively. Ourresults suggest that adaptive measures of AF organization computed before ablation perform better thantime-invariant based indices for identifying patients whose AF will terminate during ablation within theleft atrium. These findings are indicative of a higher baseline organization in these patients that could beused to select candidates for the termination of AF by stepwise catheter ablation.© 2013 Elsevier Ltd. All rights reserved.
Resumo:
Neuroimaging studies typically compare experimental conditions using average brain responses, thereby overlooking the stimulus-related information conveyed by distributed spatio-temporal patterns of single-trial responses. Here, we take advantage of this rich information at a single-trial level to decode stimulus-related signals in two event-related potential (ERP) studies. Our method models the statistical distribution of the voltage topographies with a Gaussian Mixture Model (GMM), which reduces the dataset to a number of representative voltage topographies. The degree of presence of these topographies across trials at specific latencies is then used to classify experimental conditions. We tested the algorithm using a cross-validation procedure in two independent EEG datasets. In the first ERP study, we classified left- versus right-hemifield checkerboard stimuli for upper and lower visual hemifields. In a second ERP study, when functional differences cannot be assumed, we classified initial versus repeated presentations of visual objects. With minimal a priori information, the GMM model provides neurophysiologically interpretable features - vis à vis voltage topographies - as well as dynamic information about brain function. This method can in principle be applied to any ERP dataset testing the functional relevance of specific time periods for stimulus processing, the predictability of subject's behavior and cognitive states, and the discrimination between healthy and clinical populations.
Resumo:
Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.