116 resultados para Ventricular Function, Right
Resumo:
A 68 year-old woman presented with increasing dyspnoea (NYHA II) and systolic murmur at auscultation. Echocardiography showed thickened pulmonary valve leaflets, a systolic prolapsing mass provoking severe pulmonary stenosis (peak systolic pulmonary pressure: 42 mmHg), no regurgitation, minimal right ventricular dilatation but normal ventricular function. CT scan showed a dense structure extending from the right ventricular outflow tract (RVOT) up to the pulmonary bifurcation infiltrating the pulmonary valve (PV).
Resumo:
BACKGROUND: Chronic mountain sickness (CMS) is a major public health problem in mountainous regions of the world. In its more advanced stages, exercise intolerance is often found, but the underlying mechanism is not known. Recent evidence indicates that exercise-induced pulmonary hypertension is markedly exaggerated in CMS. We speculated that this problem may cause pulmonary fluid accumulation and aggravate hypoxemia during exercise. METHODS: We assessed extravascular lung water (chest ultrasonography), pulmonary artery pressure, and left ventricular function in 15 patients with CMS and 20 control subjects at rest and during exercise at 3,600 m. RESULTS: Exercise at high altitude rapidly induced pulmonary interstitial fluid accumulation in all patients but one (14 of 15) with CMS and further aggravated the preexisting hypoxemia. In contrast, in healthy high-altitude dwellers exercise did not induce fluid accumulation in the majority of subjects (16 of 20) (P = .002 vs CMS) and did not alter arterial oxygenation. Exercise-induced pulmonary interstitial fluid accumulation and hypoxemia in patients with CMS was accompanied by a more than two times larger increase of pulmonary artery pressure than in control subjects (P < .001), but no evidence of left ventricular dysfunction. Oxygen inhalation markedly attenuated the exercise-induced pulmonary hypertension (P < .01) and interstitial fluid accumulation (P < .05) in patients with CMS but had no detectable effects in control subjects. CONCLUSIONS: To our knowledge, these findings provide the first direct evidence that exercise induces rapid interstitial lung fluid accumulation and hypoxemia in patients with CMS that appear to be related to exaggerated pulmonary hypertension. We suggest that this problem contributes to exercise intolerance in patients with CMS. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01182792; URL: www.clinicaltrials.gov.
Resumo:
BACKGROUND: Improved survival after prophylactic implantation of a defibrillator in patients with reduced left ventricular ejection fraction (EF) after myocardial infarction (MI) has been demonstrated in patients who experienced remote MIs in the 1990s. The absolute survival benefit conferred by this recommended strategy must be related to the current risk of arrhythmic death, which is evolving. This study evaluates the mortality rate in survivors of MI with impaired left ventricular function and its relation to pre-hospital discharge baseline characteristics. METHODS: The clinical records of patients who had sustained an acute MI between 1999 and 2000 and had been discharged from the hospital with an EF of < or = 40% were included. Baseline characteristics, drug prescriptions, and invasive procedures were recorded. Bivariate and multivariate analyses were performed using a primary end point of total mortality. RESULTS: One hundred sixty-five patients were included. During a median follow-up period of 30 months (interquartile range, 22 to 36 months) 18 patients died. The 1-year and 2-year mortality rates were 6.7% and 8.6%, respectively. Variables reflecting coronary artery disease and its management (ie, prior MI, acute reperfusion, and complete revascularization) had a greater impact on mortality than variables reflecting mechanical dysfunction (ie, EF and Killip class). CONCLUSIONS: The mortality rate among survivors of MIs with reduced EF was substantially lower than that reported in the 1990s. The strong decrease in the arrhythmic risk implies a proportional increase in the number of patients needed to treat with a prophylactic defibrillator to prevent one adverse event. The risk of an event may even be sufficiently low to limit the detectable benefit of defibrillators in patients with the prognostic features identified in our study. This argues for additional risk stratification prior to the prophylactic implantation of a defibrillator.
Resumo:
BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR) family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases) and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1), and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility.
Resumo:
Percutaneous transluminal coronary angioplasty (PTCA) is a widely accepted treatment of symptomatic coronary heart disease providing prompt and prolonged clinical, improvement in most patients. We have examined the value of this therapy in a group of 91 patients in their eighth decade treated by 133 consecutive angioplasties. Most patients had refractory or instable angor in spite of optimal pharmacotherapy. Multivessel disease was present in 67% and maintained left-ventricular function in 92% of the patients. The angiographic success rate of PTCA was 84%; technical failures occurred in 12% and adverse events in 14%. Two patients died. The rate of symptomatic restenosis was 24%. Survival and patients free of myocardial events were at 89% and 60%, respectively, estimated by Kaplan-Meier analysis. PTCA is an efficient and acceptable treatment for the elderly patient with severe and drug-resistant angina. Two years after PTCA the majority of patients was asymptomatic.
A key role of TRPC channels in the regulation of electromechanical activity of the developing heart.
Resumo:
Aims It is well established that dysfunction of voltage-dependent ion channels results in arrhythmias and conduction disturbances in the foetal and adult heart. However, the involvement of voltage-insensitive cationic TRPC (transient receptor potential canonical) channels remains unclear. We assessed the hypothesis that TRPC channels play a crucial role in the spontaneous activity of the developing heart.Methods and results TRPC isoforms were investigated in isolated hearts obtained from 4-day-old chick embryos. Using RT-PCR, western blotting and co-immunoprecipitation, we report for the first time that TRPC1, 3, 4, 5, 6, and 7 isoforms are expressed at the mRNA and protein levels and that they can form a macromolecular complex with the alpha 1C subunit of the L-type voltage-gated calcium channel (Cav1.2) in atria and ventricle. Using ex vivo electrocardiograms, electrograms of isolated atria and ventricle and ventricular mechanograms, we found that inhibition of TRPC channels by SKF-96365 leads to negative chrono-, dromo-, and inotropic effects, prolongs the QT interval, and provokes first-and second-degree atrioventricular blocks. Pyr3, a specific antagonist of TRPC3, affected essentially atrioventricular conduction. On the other hand, specific blockade of the L-type calcium channel with nifedipine rapidly stopped ventricular contractile activity without affecting rhythmic electrical activity.Conclusions These results give new insights into the key role that TRPC channels, via interaction with the Cav1.2 channel, play in regulation of cardiac pacemaking, conduction, ventricular activity, and contractility during cardiogenesis.
Resumo:
Morphological and functional effects of transmyocardial laser revascularization (TMLR) are analyzed in an acute setting on a porcine model. Ten channels were drilled in the left lateral wall of the heart of 15 pigs (mean weight, 73 +/- 4 kg) with a Holmium-YAG laser (wavelength: 2.1 mu, probe diameter: 1.75 mm). Echocardiographic control was performed before the TMLR procedure as well as 5 min and 30 min thereafter. Echocardiographic parameters were recorded in short-axis at the level of the laser channels, and included left ventricular ejection fraction, fractional shortening and segmental wall motility of the channels' area (scale 0-3: 0 = normal, 1 = hypokinesia, 2 = akinesia, 3 = dyskinesia). After sacrifice the lased region was sliced perpendicularly to the channels for histological and morphometrical analysis. Five minutes after the drilling of the channels, all the echocardiographic index worsened significantly in comparison with baseline values (p < 0.01). All recovered after 30 min and showed no difference with baseline values. Cross-section of the channel lesions measured 8.8 +/- 2.4 mm2 which is more than three times that of the probe (p < 0.01). In acute conditions, the lesions due to the TMLR probe are significantly larger than the probe itself and cause a transient drop of the segmental wall motility on a healthy myocardium. These results suggest that TMLR should be used cautiously in the clinical setting for patients with an impaired ventricular function.
Resumo:
BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.
Resumo:
Recent progress in cancer therapy has dramatically modified the course and prognosis of some malignancies. Chemo and radiotherapy, along with newer targeted treatments, are given to control symptoms, postpone relapse, or attempt cure. However, many of these regimens are associated with adverse cardiovascular effects such as impaired left ventricular function, myocardial ischemia, hypertension, and arrhythmia. Awareness of potential cardiotoxicity is important, as it may allow practitioners to recognize early signs of cardiac complications and to adapt therapy in order to limit detrimental effects. Diagnosis of cardiovascular complications may iustify the introduction of cardiologic therapies, and may require the reassessment of risk/benefit ratios related to specific cancer therapy. Screening and follow up strategies are proposed.
Resumo:
Acute myocardial dysfunction is a typical manifestation of septic shock. Experimentally, the administration of endotoxin [lipopolysacharride (LPS)] to laboratory animals is frequently used to study such dysfunction. However, a majority of studies used load-dependent indexes of cardiac function [including ejection fraction (EF) and maximal systolic pressure increment (dP/dt(max))], which do not directly explore cardiac inotropism. Therefore, we evaluated the direct effects of LPS on myocardial contractility, using left ventricular (LV) pressure-volume catheters in mice. Male BALB/c mice received an intraperitoneal injection of E. coli LPS (1, 5, 10, or 20 mg/kg). After 2, 6, or 20 h, cardiac function was analyzed in anesthetized, mechanically ventilated mice. All doses of LPS induced a significant drop in LV stroke volume and a trend toward reduced cardiac output after 6 h. Concomitantly, there was a significant decrease of LV preload (LV end-diastolic volume), with no apparent change in LV afterload (evaluated by effective arterial elastance and systemic vascular resistance). Load-dependent indexes of LV function were markedly reduced at 6 h, including EF, stroke work, and dP/dt(max). In contrast, there was no reduction of load-independent indexes of LV contractility, including end-systolic elastance (ejection phase measure of contractility) and the ratio dP/dt(max)/end-diastolic volume (isovolumic phase measure of contractility), the latter showing instead a significant increase after 6 h. All changes were transient, returning to baseline values after 20 h. Therefore, the alterations of cardiac function induced by LPS are entirely due to altered loading conditions, but not to reduced contractility, which may instead be slightly increased.
Resumo:
Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-kappa B and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38 alpha) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-alpha, markers of fibrosis (transforming growth factor-beta, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-kappa B activation, and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis. (J Am Coll Cardiol 2010;56:2115-25) (C) 2010 by the American College of Cardiology Foundation.
Resumo:
OBJECTIVE: Atrial fibrillation is a very common heart arrhythmia, associated with a five-fold increase in the risk of embolic strokes. Treatment strategies encompass palliative drugs or surgical procedures all of which can restore sinus rhythm. Unfortunately, atria often fail to recover their mechanical function and patients therefore require lifelong anticoagulation therapy. A motorless volume displacing device (Atripump) based on artificial muscle technology, positioned on the external surface of atrium could avoid the need of oral anticoagulation and its haemorrhagic complications. An animal study was conducted in order to assess the haemodynamic effects that such a pump could provide. METHODS: Atripump is a dome-shape siliconecoated nitinol actuator sewn on the external surface of the atrium. It is driven by a pacemaker-like control unit. Five non-anticoagulated sheep were selected for this experiment. The right atrium was surgically exposed, the device sutured and connected. Haemodynamic parameters and intracardiac ultrasound (ICUS) data were recorded in each animal and under three conditions; baseline; atrial fibrillation (AF); atripump assisted AF (aaAF). RESULTS: In two animals, after 20 min of AF, small thrombi appeared in the right atrial appendix and were washed out once the pump was turned on. Assistance also enhanced atrial ejection fraction. 31% baseline; 5% during AF; 20% under aaAF. Right atrial systolic surfaces (cm2) were; 5.2 +/- 0.3 baseline; 6.2 +/- 0.1 AF; 5.4 +/- 0.3 aaAF. CONCLUSION: This compact and reliable pump seems to restore the atrial "kick" and prevents embolic events. It could avoid long-term anticoagulation therapy and open new hopes in the care of end-stage heart failure.
Resumo:
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.
Pulmonary-artery pressure and exhaled nitric oxide in Bolivian and Caucasian high altitude dwellers.
Resumo:
There is evidence that high altitude populations may be better protected from hypoxic pulmonary hypertension than low altitude natives, but the underlying mechanism is incompletely understood. In Tibetans, increased pulmonary respiratory NO synthesis attenuates hypoxic pulmonary hypertension. It has been speculated that this mechanism may represent a generalized high altitude adaptation pattern, but direct evidence for this speculation is lacking. We therefore measured systolic pulmonary-artery pressure (Doppler chocardiography) and exhaled nitric oxide (NO) in 34 healthy, middle-aged Bolivian high altitude natives and in 34 age- and sex-matched, well-acclimatized Caucasian low altitude natives living at high altitude (3600 m). The mean+/-SD systolic right ventricular to right atrial pressure gradient (24.3+/-5.9 vs. 24.7+/-4.9 mmHg) and exhaled NO (19.2+/-7.2 vs. 22.5+/-9.5 ppb) were similar in Bolivians and Caucasians. There was no relationship between pulmonary-artery pressure and respiratory NO in the two groups. These findings provide no evidence that Bolivian high altitude natives are better protected from hypoxic pulmonary hypertension than Caucasian low altitude natives and suggest that attenuation of pulmonary hypertension by increased respiratory NO synthesis may not represent a universal adaptation pattern in highaltitude populations.