138 resultados para Transforming Growth Factor beta -- genetics
Resumo:
BACKGROUND: Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-beta signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. CONCLUSIONS/SIGNIFICANCE: Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-beta signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-beta signaling and connective tissue dysfunction.
Resumo:
The Ca(2+)-regulated calcineurin/nuclear factor of activated T cells (NFAT) cascade controls alternative pathways of T-cell activation and peripheral tolerance. Here, we describe reduction of NFATc2 mRNA expression in the lungs of patients with bronchial adenocarcinoma. In a murine model of bronchoalveolar adenocarcinoma, mice lacking NFATc2 developed more and larger solid tumors than wild-type littermates. The extent of central tumor necrosis was decreased in the tumors in NFATc2((-/-)) mice, and this finding was associated with reduced tumor necrosis factor-alpha and interleukin-2 (IL-2) production by CD8(+) T cells. Adoptive transfer of CD8(+) T cells of NFATc2((-/-)) mice induced transforming growth factor-beta(1) in the airways of recipient mice, thus supporting CD4(+)CD25(+)Foxp-3(+)glucocorticoid-induced tumor necrosis factor receptor (GITR)(+) regulatory T (T(reg)) cell survival. Finally, engagement of GITR in NFATc2((-/-)) mice induced IFN-gamma levels in the airways, reversed the suppression by T(reg) cells, and costimulated effector CD4(+)CD25(+) (IL-2Ralpha) and memory CD4(+)CD127(+) (IL-7Ralpha) T cells, resulting in abrogation of carcinoma progression. Agonistic signaling through GITR, in the absence of NFATc2, thus emerges as a novel possible strategy for the treatment of human bronchial adenocarcinoma in the absence of NFATc2 by enhancing IL-2Ralpha(+) effector and IL-7Ralpha(+) memory-expressing T cells.
Resumo:
For tissue engineering, several cell types and tissues have been proposed as starting material. Allogenic skin products available for therapeutic usage are mostly developed with cell culture and with foreskin tissue of young individuals. Fetal skin cells offer a valuable solution for effective and safe tissue engineering for wounds due to their rapid growth and simple cell culture. By selecting families of genes that have been reported to be implicated in wound repair and particularly for scarless fetal wound healing including transforming growth factor-beta (TGF-beta) superfamily, extracellular matrix, and nerve/angiogenesis growth factors, we have analyzed differences in their expression between fetal skin and foreskin cells, and the same passages. Of the five TGF-beta superfamily genes analyzed by real-time reverse transcription-polymerase chain reaction, three were found to be significantly different with sixfold up-regulated for TGF-beta2, and 3.8-fold for BMP-6 in fetal cells, whereas GDF-10 was 11.8-fold down-regulated. For nerve growth factors, midkine was 36-fold down-regulated in fetal cells, and pleiotrophin was 4.76-fold up-regulated. We propose that fetal cells present technical and therapeutic advantages compared to foreskin cells for effective cell-based therapy for wound management, and overall differences in gene expression could contribute to the degree of efficiency seen in clinical use with these cells.
Resumo:
The three peroxisome proliferator-activated receptors (PPAR alpha, PPAR beta, and PPAR gamma) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. They are regarded as being sensors of physiological levels of fatty acids and fatty acid derivatives. In the adult mouse skin, they are found in hair follicle keratinocytes but not in interfollicular epidermis keratinocytes. Skin injury stimulates the expression of PPAR alpha and PPAR beta at the site of the wound. Here, we review the spatiotemporal program that triggers PPAR beta expression immediately after an injury, and then gradually represses it during epithelial repair. The opposing effects of the tumor necrosis factor-alpha and transforming growth factor-beta-1 signalling pathways on the activity of the PPAR beta promoter are the key elements of this regulation. We then compare the involvement of PPAR beta in the skin in response to an injury and during hair morphogenesis, and underscore the similarity of its action on cell survival in both situations.
Resumo:
The phosphoinositide 3-kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here, we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85alpha, p55alpha, and p50alpha impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage-dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell-origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up-regulation of the transforming growth factor-beta co-receptor endoglin, and reduced levels of mature vascular endothelial growth factor-C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis.
Resumo:
We have shown previously that a fetal sheep liver extract (FSLE) containing significant quantities of fetal ovine gamma globin chain (Hbgamma) and LPS injected into aged (>20 months) mice could reverse the altered polarization (increased IL-4 and IL-10 with decreased IL-2 and IFNgamma) in cytokine production seen from ConA stimulated lymphoid cells of those mice. The mechanism(s) behind this change in cytokine production were not previously investigated. We report below that aged mice show a >60% decline in numbers and suppressive function of both CD4(+)CD25(+)Foxp3(+) Treg and so-called Tr3 (CD4(+)TGFbeta(+)), and that their number/function is restored to levels seen in control (8-week-old) mice by FSLE. In addition, on a per cell basis, CD4(+)CD25(-)Treg from aged mice were >4-fold more effective in suppression of proliferation and IL-2 production from ConA-activated lymphoid cells of a pool of CD4(+)CD25(-)T cells from 8-week-old mice than similar cells from young animals, and this suppression by CD25(-)T cells was also ameliorated following FSLE treatment. Infusion of anti-TGFbeta and anti-IL-10 antibodies in vivo altered Treg development following FSLE treatment, and attenuated FSLE-induced alterations in cytokine production profiles.
Resumo:
The mechanisms regulating systemic and mucosal IgA responses in the respiratory tract are incompletely understood. Using virus-like particles loaded with single-stranded RNA as a ligand for TLR7, we found that systemic vs mucosal IgA responses in mice were differently regulated. Systemic IgA responses following s.c. immunization were T cell independent and did not require TACI or TGFbeta, whereas mucosal IgA production was dependent on Th cells, TACI, and TGFbeta. Strikingly, both responses required TLR7 signaling, but systemic IgA depended upon TLR7 signaling directly to B cells whereas mucosal IgA required TLR7 signaling to lung dendritic cells and alveolar macrophages. Our data show that IgA switching is controlled differently according to the cell type receiving TLR signals. This knowledge should facilitate the development of IgA-inducing vaccines.
Resumo:
BACKGROUND:: Attenuated innate immune responses to the intestinal microbiota have been linked to the pathogenesis of Crohn's disease (CD). Recent genetic studies have revealed that hypofunctional mutations of NLRP3, a member of the NOD-like receptor (NLR) superfamily, are associated with an increased risk of developing CD. NLRP3 is a key component of the inflammasome, an intracellular danger sensor of the innate immune system. When activated, the inflammasome triggers caspase-1-dependent processing of inflammatory mediators, such as IL-1β and IL-18. METHODS:: In the current study we sought to assess the role of the NLRP3 inflammasome in the maintenance of intestinal homeostasis through its regulation of innate protective processes. To investigate this role, Nlrp3(-/-) and wildtype mice were assessed in the dextran sulfate sodium and 2,4,6-trinitrobenzenesulfonic acid models of experimental colitis. RESULTS:: Nlrp3(-/-) mice were found to be more susceptible to experimental colitis, an observation that was associated with reduced IL-1β, reduced antiinflammatory cytokine IL-10, and reduced protective growth factor TGF-β. Macrophages isolated from Nlrp3(-/-) mice failed to respond to bacterial muramyl dipeptide. Furthermore, Nlrp3-deficient neutrophils exhibited reduced chemotaxis and enhanced spontaneous apoptosis, but no change in oxidative burst. Lastly, Nlrp3(-/-) mice displayed altered colonic β-defensin expression, reduced colonic antimicrobial secretions, and a unique intestinal microbiota. CONCLUSIONS:: Our data confirm an essential role for the NLRP3 inflammasome in the regulation of intestinal homeostasis and provide biological insight into disease mechanisms associated with increased risk of CD in individuals with NLRP3 mutations. (Inflamm Bowel Dis 2010).
Resumo:
The peroxisome proliferator-activated receptors (PPAR) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. As ligand-activated receptors, they form a functional transcriptional unit upon heterodimerization with retinoid X receptors (RXRs). PPARs are activated by fatty acids and their derivatives, whereas RXR is activated by 9-cis retinoic acid. This heterodimer binds to peroxisome proliferator response elements (PPRE) residing in target genes and stimulates their expression. Recent reports now indicate that PPARs and RXRs can function independently, in the absence of a hetero-partner, to modulate gene expression. Of importance, these non-canonical mechanisms underscore the impact of both cofactors and DNA on gene expression. Furthermore, these different mechanisms reveal the increasing repertoire of PPAR 'target' genes that now encompasses non-PPREs containing genes. It is also becoming apparent that understanding the regulation of PPAR expression and activity, can itself have a significant influence on how the expression of subgroups of target genes is studied and integrated in current knowledge.
Resumo:
Background: Intranasal administration of high amount of allergen was shown to induce tolerance and to reverse the allergic phenotype. However, mechanisms of tolerance induction via the mucosal route are still unclear. Objectives: To characterize the therapeutic effects of intranasal application of ovalbumin (OVA) in a mouse model of bronchial inflammation as well as the cellular and molecular mechanisms leading to protection upon re-exposure to allergen. Methods: After induction of bronchial inflammation, mice were treated intranasally with OVA and re-exposed to OVA aerosols 10 days later. Bronchoalveolar lavage fluid (BALF), T cell proliferation and cytokine secretion were examined. The respective role of CD4(+)CD25(+) and CD4(+)CD25(-) T cells in the induction of tolerance was analysed. Results: Intranasal treatment with OVA drastically reduced inflammatory cell recruitment into BALF and bronchial hyperresponsiveness upon re-exposure to allergen. Both OVA- specific-proliferation of T cells, T(h)1 and T(h)2 cytokine production from lung and bronchial lymph nodes were inhibited. Transfer of CD4(+)CD25(-) T cells, which strongly expressed membrane-bound transforming growth factor beta (mTGF beta), from tolerized mice protected asthmatic recipient mice from subsequent aerosol challenges. The presence of CD4(+)CD25(+)(Foxp3(+)) T cells during the process of tolerization was indispensable to CD4(+)CD25(-) T cells to acquire regulatory properties. Whereas the presence of IL-10 appeared dispensable in this model, the suppression of CD4(+)CD25(-)mTGF beta(+) T cells in transfer experiments significantly impaired the down-regulation of airways inflammation. Conclusion: Nasal application of OVA in established asthma led to the induction of CD4(+)CD25(-)mTGF beta(+) T cells with regulatory properties, able to confer protection upon allergen re-exposure.
Resumo:
Rationale: Experimental autoimmune myocarditis (EAM) mirrors important pathogenic aspects of inflammatory cardiomyopathy, a common cause of heart failure. In EAM, TGF-β-dependent conversion of heart-infiltrating prominin-1+ progenitors into myofibroblasts is critical for development of fibrosis and the end-stage heart failure phenotype. Therapeutic strategies modulating the in vivo fate of prominin-1+ progenitors might therefore prevent TGF-β-mediated cardiac fibrosis and pathological remodelling. Methods and Results: EAM was induced in BALB/c mice using alpha-myosin heavy chain (aMyHC) peptide/complete Freund's adjuvant (CFA) immunization. Prominin-1+ cells were isolated from the inflamed hearts at day 21 after immunization, expanded and treated with Macrophage Colony-Stimulating Factor (M-CSF) or Transforming Growth Factor-beta (TGF-β). Herein, we demonstrated that M-CSF turns, ex vivo and in the EAM, heart-infiltrating prominin-1+ progenitors into immunosuppressive F4/80/CD11b/CD16/32/NOS2-expressing, nitric oxide producing and E.coli bacteria phygocyting macrophages, and protect further TGF-β-stimulated differentiation into pathogenic myofibroblasts. Systemic M-CSF treatment during myocarditis completely prevented post-inflammatory fibrosis, T cell relapse and left ventricular dysfunction. Mechanistically, M-CSF-induced macrophage differentiation from prominin-1+ progenitors critically required nitric oxide synthase 2. Accordingly, M-CSF treatment failed to reduce myocardial fibrosis development in Nos2-/- mice. Conclusions: Altering the in vivo fate of inflammatory prominin-1 expressing progenitors from pro-fibrotic into the F4/80 expressing macrophage phenotype protects from myocarditis progression, cardiac fibrosis, and heart failure. These findings offer a modern therapeutic model and challenge former concepts, which attributed macrophages a detrimental role in inflammatory cardiomyopathy progression.
Resumo:
PURPOSE: To determine whether bovine corneal endothelial (BCE) cells and keratocytes express the inducible form of nitric oxide synthase (NOS) after exposure to cytokines and lipopolysaccharide (LPS), and to study the regulation of NOS by growth factors. METHODS: Cultures of bovine corneal endothelial cells and keratocytes were exposed to increasing concentrations of LPS, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha). At selected intervals after exposure, nitrite levels in the supernatants were evaluated by the Griess reaction. Total RNA was extracted from the cell cultures, and messenger RNA levels for inducible NOS (NOS-2) were measured by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Exposure of BCE cells and keratocytes to LPS and IFN-gamma resulted in an increase of nitrite levels that was potentiate by the addition of TNF-alpha. Analysis by RT-PCR demonstrated that nitrite release was correlated to the expression of NOS-2 messenger RNA in BCE cells and keratocytes. Stereoselective inhibitors of NOS and cycloheximide inhibited LPS-IFN-gamma-induced nitrite release in both cells, whereas transforming growth factor-beta (TGF-beta) slightly potentiated it. Fibroblast growth factor-2 (FGF-2) inhibited LPS-IFN-gamma-induced nitrite release and NOS-2 messenger RNA accumulation in keratocytes but not in BCE cells. CONCLUSIONS: The results demonstrate that in vitro activation of keratocytes and BCE cells by LPS and cytokines induces NOS-2 expression and release of large amounts of NO. The high amounts of NO could be involved in inflammatory corneal diseases in vivo.
Resumo:
Autosomal recessive cutis laxa type I (ARCL type I) is characterized by generalized cutis laxa with pulmonary emphysema and/or vascular complications. Rarely, mutations can be identified in FBLN4 or FBLN5. Recently, LTBP4 mutations have been implicated in a similar phenotype. Studying FBLN4, FBLN5, and LTBP4 in 12 families with ARCL type I, we found bi-allelic FBLN5 mutations in two probands, whereas nine probands harbored biallelic mutations in LTBP4. FBLN5 and LTBP4 mutations cause a very similar phenotype associated with severe pulmonary emphysema, in the absence of vascular tortuosity or aneurysms. Gastrointestinal and genitourinary tract involvement seems to be more severe in patients with LTBP4 mutations. Functional studies showed that most premature termination mutations in LTBP4 result in severely reduced mRNA and protein levels. This correlated with increased transforming growth factor-beta (TGFβ) activity. However, one mutation, c.4127dupC, escaped nonsense-mediated decay. The corresponding mutant protein (p.Arg1377Alafs(*) 27) showed reduced colocalization with fibronectin, leading to an abnormal morphology of microfibrils in fibroblast cultures, while retaining normal TGFβ activity. We conclude that LTBP4 mutations cause disease through both loss of function and gain of function mechanisms.
Resumo:
Interleukin (IL) 18 is a potent pro-inflammatory Th1 cytokine that exerts pleiotropic effector functions in both innate and acquired immune responses. Increased IL-18 production during acute rejection has been reported in experimental heart transplantation models and in kidney transplant recipients. IL-18-binding protein (IL-18BP) binds IL-18 with high affinity and neutralizes its biologic activity. We have analyzed the efficacy of an adenoviral vector expressing an IL-18BP-Ig fusion protein in a rat model of heart transplantation. IL-18BP-Ig gene transfer into Fisher (F344) rat donor hearts resulted in prolonged graft survival in Lewis recipients (15.8 +/- 1.4 days vs. 10.3 +/- 2.5 and 10.1 +/- 2.1 days with control virus and buffer solution alone, respectively; P < 0.001). Immunohistochemical analysis revealed decreased intra-graft infiltrates of monocytes/macrophages, CD4(+), CD8alpha(+) and T-cell receptor alphabeta(+) cells after IL-18BP-Ig versus mock gene transfer (P < 0.05). Real-time reverse transcriptase polymerase chain reaction analysis showed decreased cytokine transcripts for the RANTES chemokine and transforming growth factor-beta after IL-18BP-Ig gene transfer (P < 0.05). IL-18BP-Ig gene transfer attenuates inflammatory cell infiltrates and prolongs cardiac allograft survival in rats. These results suggest a contributory role for IL-18 in acute rejection. Further studies aiming at defining the therapeutic potential of IL-18BP are warranted.