346 resultados para Tissue Inhibitors
Resumo:
Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYLSEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (Ki) were found to be 47 microM for the 24-mer and 30 microM for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.
Resumo:
NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.
Resumo:
BACKGROUND/AIM: Both steatosis and insulin resistance have been linked to accelerated fibrosis in chronic hepatitis C. Connective tissue growth factor (CTGF) plays a major role in extracellular matrix production in fibrotic disorders including cirrhosis, and its expression is stimulated in vitro by insulin and glucose. We hypothesized that CTGF may link steatosis, insulin resistance and fibrosis. METHODS: We included 153 chronic hepatitis C patients enrolled in the Swiss Hepatitis C Cohort Study and for whom a liver biopsy and plasma samples were available. CTGF expression was assessed quantitatively by immunohistochemistry. In 94 patients (57 with genotypes non-3), plasma levels of glucose, insulin and leptin were also measured. CTGF synthesis was investigated by immunoblotting on LX-2 stellate cells. RESULTS: Connective tissue growth factor expression was higher in patients with steatosis (P=0.039) and in patients with fibrosis (P=0.008) than those without these features. CTGF levels were neither associated with insulinaemia or with glycaemia, nor with inflammation. By multiple regression analysis, CTGF levels were independently associated with steatosis, a past history of alcohol abuse, plasma leptin and HCV RNA levels; when only patients with genotypes non-3 were considered, CTGF levels were independently associated with a past history of alcohol abuse, plasma leptin levels and steatosis. Leptin stimulated CTGF synthesis in LX-2 cells. CONCLUSIONS: In patients with chronic hepatitis C and steatosis, CTGF may promote fibrosis independently of inflammation. CTGF may link steatosis and fibrosis via increased leptin levels.
Resumo:
Having determined in a phase I study the maximum tolerated dose of high-dose ifosfamide combined with high-dose doxorubicin, we now report the long-term results of a phase II trial in advanced soft-tissue sarcomas. Forty-six patients with locally advanced or metastatic soft-tissue sarcomas were included, with age <60 years and all except one in good performance status (0 or 1). The chemotherapy treatment consisted of ifosfamide 10 g m(-2) (continuous infusion for 5 days), doxorubicin 30 mg m(-2) day(-1) x 3 (total dose 90 mg m(-2)), mesna and granulocyte-colony stimulating factor. Cycles were repeated every 21 days. A median of 4 (1-6) cycles per patient was administered. Twenty-two patients responded to therapy, including three complete responders and 19 partial responders for an overall response rate of 48% (95% CI: 33-63%). The response rate was not different between localised and metastatic diseases or between histological types, but was higher in grade 3 tumours. Median overall survival was 19 months. Salvage therapies (surgery and/or radiotherapy) were performed in 43% of patients and found to be the most significant predictor for favourable survival (exploratory multivariate analysis). Haematological toxicity was severe, including grade > or =3 neutropenia in 59%, thrombopenia in 39% and anaemia in 27% of cycles. Three patients experienced grade 3 neurotoxicity and one patient died of septic shock. This high-dose regimen is toxic but nonetheless feasible in multicentre settings in non elderly patients with good performance status. A high response rate was obtained. Prolonged survival was mainly a function of salvage therapies.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that can be activated by various xenobiotics and natural fatty acids. These transcription factors primarily regulate genes involved in lipid metabolism and also play a role in adipocyte differentiation. We present the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPAR subtypes. In numerous cell types from either ectodermal, mesodermal, or endodermal origin, PPARs are coexpressed, with relative levels varying between them from one cell type to the other. PPAR-alpha is highly expressed in hepatocytes, cardiomyocytes, enterocytes, and the proximal tubule cells of kidney. PPAR-beta is expressed ubiquitously and often at higher levels than PPAR-alpha and -gamma. PPAR-gamma is expressed predominantly in adipose tissue and the immune system. Our results suggest new potential directions to investigate the functions of the different PPAR subtypes.
Resumo:
The distribution of the uncoupling protein (UCP) in brown adipocyte mitochondria of the hibernant Muscardinus avellanarius was obtained by ultrastructural immunocytochemistry. In both cryosections and sections of Lowicryl-embedded material UCP was localized in the mitochondrial cristae of brown adipocytes, but not in liver mitochondria. It should now be possible to easily identify the morphology of cells committed to BAT differentiation in the tissue as well as in cell culture.
Resumo:
Aside from ethical considerations, the primary requirement for usage of human tissues in basic or translational research is the thorough characterization of tissues. The second, but equally essential, requirement is that tissues be collected, processed, annotated, and preserved in optimal conditions. These requirements put the pathologist at the center of tissue banking activities and of research aimed at discovering new biomarkers. Pathologists not only provide information identifying the specimen but also make decisions on what materials should be biobanked, on the preservation conditions, and on the timeline of events that precede preservation and storage. This central position calls for increased recognition of the role of the pathologist by the biomolecular community and places new demands on the pathologist's workload and scope of scientific activities. These questions were addressed by an Expert Group Meeting of the European Biological and Biomolecular Research Infrastructure (BBMRI). While detailed recommendations are published elsewhere (Bevilacqua et al., Virchows Archivs, 2010, in press), this article outlines the strategic and technological issues identified by the Expert Group and identifies ways forward for better integration of pathology in the current thrust for development of biomarker-based "personalized medicine.
Resumo:
The paracaspase MALT1 is an Arg-specific protease that cleaves multiple substrates to promote lymphocyte proliferation and survival. The catalytic activity of MALT1 is normally tightly regulated by antigen receptor triggering, which promotes MALT1 activation by its inducible monoubiquitination-dependent dimerization. Constitutive MALT1 activity is a hallmark of specific subsets of B-cell lymphomas, which are characterized by chromosomal translocations or point mutations that activate MALT1 or its upstream regulators. Recent findings suggest that such lymphomas may be sensitive to treatment with MALT1 inhibitors. Here we review recent progress in the understanding of MALT1 function and regulation, and the development of small molecule MALT1 inhibitors for therapeutic applications.
Resumo:
Cyclooxyganase-2 (COX-2), a rate-limiting enzyme in the prostaglandin synthesis pathway, is overexpressed in many cancers and contributes to cancer progression through tumor cell-autonomous and paracrine effects. Regular use of non-steroidal anti-inflammatory drugs or selective COX-2 inhibitors (COXIBs) reduces the risk of cancer development and progression, in particular of the colon. The COXIB celecoxib is approved for adjunct therapy in patients with Familial adenomatous polyposis at high risk for colorectal cancer (CRC) formation. Long-term use of COXIBs, however, is associated with potentially severe cardiovascular complications, which hampers their broader use as preventive anticancer agents. In an effort to better understand the tumor-suppressive mechanisms of COXIBs, we identified MAGUK with Inverted domain structure-1 (MAGI1), a scaffolding protein implicated in the stabilization of adherens junctions, as a gene upregulated by COXIB in CRC cells and acting as tumor suppressor. Overexpression of MAGI1 in CRC cell lines SW480 and HCT116 induced an epithelial-like morphology; stabilized E-cadherin and β-catenin localization at cell-cell junctions; enhanced actin stress fiber and focal adhesion formation; increased cell adhesion to matrix proteins and suppressed Wnt signaling, anchorage-independent growth, migration and invasion in vitro. Conversely, MAGI1 silencing decreased E-cadherin and β-catenin localization at cell-cell junctions; disrupted actin stress fiber and focal adhesion formation; and enhanced Wnt signaling, anchorage-independent growth, migration and invasion in vitro. MAGI1 overexpression suppressed SW480 and HCT116 subcutaneous primary tumor growth, attenuated primary tumor growth and spontaneous lung metastasis in an orthotopic model of CRC, and decreased the number and size of metastatic nodules in an experimental model of lung metastasis. Collectively, these results identify MAG1 as a COXIB-induced inhibitor of the Wnt/β-catenin signaling pathway, with tumor-suppressive and anti-metastatic activity in experimental colon cancer.
Resumo:
BACKGROUND: Individually, randomised trials have not shown conclusively whether adjuvant chemotherapy benefits adult patients with localised resectable soft-tissue sarcoma.METHODS: A quantitative meta-analysis of updated data from individual patients from all available randomised trials was carried out to assess whether adjuvant chemotherapy improves overall survival, recurrence-free survival, and local and distant recurrence-free intervals (RFI) and whether chemotherapy is differentially effective in patients defined by age, sex, disease status at randomisation, disease site, histology, grade, tumour size, extent of resection, and use of radiotherapy.FINDINGS: 1568 patients from 14 trials of doxorubicin-based adjuvant chemotherapy were included (median follow-up 9.4 years). Hazard ratios of 0.73 (95% CI 0.56-0.94, p = 0.016) for local RFI, 0.70 (0.57-0.85, p = 0.0003) for distant RFI, and 0.75 (0.64-0.87, p = 0.0001) for overall recurrence-free survival, correspond to absolute benefits from adjuvant chemotherapy of 6% (95% CI 1-10), 10% (5-15), and 10% (5-15), respectively, at 10 years. For overall survival the hazard ratio of 0.89 (0.76-1.03) was not significant (p = 0.12), but represents an absolute benefit of 4% (1-9) at 10 years. These results were not affected by prespecified changes in the groups of patients analysed. There was no consistent evidence that the relative effect of adjuvant chemotherapy differed for any subgroup of patients for any endpoint. However, the best evidence of an effect of adjuvant chemotherapy for survival was seen in patients with sarcomas of the extremities.INTERPRETATION: The meta-analysis provides evidence that adjuvant doxorubicin-based chemotherapy significantly improves the time to local and distant recurrence and overall recurrence-free survival. There is a trend towards improved overall survival.
Resumo:
Measuring tissue oxygenation in vivo is of interest in fundamental biological as well as medical applications. One minimally invasive approach to assess the oxygen partial pressure in tissue (pO2) is to measure the oxygen-dependent luminescence lifetime of molecular probes. The relation between tissue pO2 and the probes' luminescence lifetime is governed by the Stern-Volmer equation. Unfortunately, virtually all oxygen-sensitive probes based on this principle induce some degree of phototoxicity. For that reason, we studied the oxygen sensitivity and phototoxicity of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate [Ru(Phen)] using a dedicated optical fiber-based, time-resolved spectrometer in the chicken embryo chorioallantoic membrane. We demonstrated that, after intravenous injection, Ru(Phen)'s luminescence lifetime presents an easily detectable pO2 dependence at a low drug dose (1 mg∕kg) and low fluence (120 mJ∕cm2 at 470 nm). The phototoxic threshold was found to be at 10 J∕cm2 with the same wavelength and drug dose, i.e., about two orders of magnitude larger than the fluence necessary to perform a pO2 measurement. Finally, an illustrative application of this pO2 measurement approach in a hypoxic tumor environment is presented.
Resumo:
Inflammation is intimately linked with naturally occurring remodeling events in the endometrium. Lipoxins comprise a group of short-lived, nonclassic eicosanoids possessing potent anti-inflammatory and proresolution properties. In the present study, we investigated the role of lipoxin A(4) (LXA(4)) in the endometrium and demonstrated that 15-LOX-2, an enzyme necessary for LX biosynthesis, is expressed in this tissue. Our results establish that LXA(4) possesses robust estrogenic activity through its capacity to alter ERE transcriptional activity, as well as expression of estrogen-regulated genes, alkaline phosphatase activity, and proliferation in human endometrial epithelial cells. Interestingly, LXA(4) also demonstrated antiestrogenic potential, significantly attenuating E2-induced activity. This estrogenic activity was directly mediated through estrogen receptors (ERs). Subsequent investigations determined that the actions of LXA(4) are exclusively mediated through ERα and closely mimic those of the potent estrogen 17β-estradiol (E2). In binding assays, LXA(4) competed with E2 for ER binding, with an IC(50) of 46 nM. Furthermore, LXA(4) exhibited estrogenic activity in vivo, increasing uterine wet weight and modulating E2-regulated gene expression. These findings reveal a previously unappreciated facet of LXA(4) bioactions, implicating this lipid mediator in novel immunoendocrine crosstalk mechanisms.
Resumo:
Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria.