194 resultados para Time-domain nuclear magnetic resonance relaxometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of navigator spatial resolution and navigator evaluation time on image quality in free-breathing navigator-gated 3D coronary magnetic resonance angiography (MRA), including real-time motion correction, was investigated in a moving phantom. Objective image quality parameters signal-to-noise ratio (SNR) and vessel sharpness were compared. It was found that for improved mage quality a short navigator evaluation time is of crucial importance. Navigator spatial resolution showed minimal influence on image quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Lesion detection and characterization in multiple sclerosis (MS) are an essential part of its clinical diagnosis and an important research field. In this pilot study, we applied the recently introduced two inversion-contrast magnetization-prepared rapid gradient echo sequence (MP2RAGE) to patients with early-stage MS.¦MATERIALS AND METHODS: The MP2RAGE is a 3-dimensional (3D) magnetization-prepared rapid gradient echo derivative providing homogeneous T1 weighting and simultaneous T1 mapping. The MP2RAGE performance was compared with that of 2 clinical routine sequences (2D fluid-attenuated inversion recovery [FLAIR] and 3D magnetization-prepared rapid gradient echo [MP-RAGE]) and 2 state-of-the art clinical research sequences (the 3D FLAIR-SPACE [sampling perfection with application-optimized contrasts by using different flip-angle evolutions], a fluid-attenuated variable flip-angle fast spin echo technique, and the 3D double-inversion recovery SPACE). A cohort of 10 early-stage female MS patients (age, 31.6 ± 4.7 years; disease duration, 3.8 ± 1.9 years; median expanded disability status scale score, 1.75) and 10 age- and gender-matched controls were enrolled after approval of the local institutional review board was obtained. Multiple sclerosis lesions were identified and assigned to brain locations and tissue types by two experienced physicians in all 5 contrasts. Subsequently, lesions were manually delineated for comparison and statistical analysis of lesion count, volume and quantitative measures.¦RESULTS AND CONCLUSIONS: The results show that the 3D T1-weighted high-resolution MP2RAGE contrast provides a sensitive means for MS lesion assessment. The additional quantitative T1 relaxation time maps obtained with the MP2RAGE provide further potential diagnostic and prognostic information that could help (a) to better discriminate lesion subtypes and (b) to stage and predict the activity and the evolution of MS. Results also indicate that the T2-weighted double-inversion recovery and FLAIR-SPACE contrasts are attractive complements to the MP2RAGE for lesion detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: The time course of atherosclerosis burden in distinct vascular territories remains poorly understood. We longitudinally evaluated the natural history of atherosclerotic progression in two different arterial territories using high spatial resolution magnetic resonance imaging (HR-MRI), a powerful, safe, and non-invasive tool. METHODS AND RESULTS: We prospectively studied a cohort of 30 patients (mean age 68.3, n = 9 females) with high Framingham general cardiovascular disease 10-year risk score (29.5%) and standard medical therapy with mild-to-moderate atherosclerosis intra-individually at the level of both carotid and femoral arteries. A total of 178 HR-MRI studies of carotid and femoral arteries performed at baseline and at 1- and 2-year follow-up were evaluated in consensus reading by two experienced readers for lumen area (LA), total vessel area (TVA), vessel wall area (VWA = TVA - LA), and normalized wall area index (NWI = VWA/TVA). At the carotid level, LA decreased (-3.19%/year, P = 0.018), VWA increased (+3.83%/year, P = 0.019), and TVA remained unchanged. At the femoral level, LA remained unchanged, VWA and TVA increased (+5.23%/year and +3.11%/year, both P < 0.01), and NWI increased for both carotid and femoral arteries (+2.28%/year, P = 0.01, and +1.8%/year, P = 0.033). CONCLUSION: The atherosclerotic burden increased significantly in both carotid and femoral arteries. However, carotid plaque progression was associated with negative remodelling, whereas the increase in femoral plaque burden was compensated by positive remodelling. This finding could be related to anatomic and flow differences and/or to the distinct degree of obstruction in the two arterial territories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion-weighting in magnetic resonance imaging (MRI) increases the sensitivity to molecular Brownian motion, providing insight in the micro-environment of the underlying tissue types and structures. At the same time, the diffusion weighting renders the scans sensitive to other motion, including bulk patient motion. Typically, several image volumes are needed to extract diffusion information, inducing also inter-volume motion susceptibility. Bulk motion is more likely during long acquisitions, as they appear in diffusion tensor, diffusion spectrum and q-ball imaging. Image registration methods are successfully used to correct for bulk motion in other MRI time series, but their performance in diffusion-weighted MRI is limited since diffusion weighting introduces strong signal and contrast changes between serial image volumes. In this work, we combine the capability of free induction decay (FID) navigators, providing information on object motion, with image registration methodology to prospectively--or optionally retrospectively--correct for motion in diffusion imaging of the human brain. Eight healthy subjects were instructed to perform small-scale voluntary head motion during clinical diffusion tensor imaging acquisitions. The implemented motion detection based on FID navigator signals is processed in real-time and provided an excellent detection performance of voluntary motion patterns even at a sub-millimetre scale (sensitivity≥92%, specificity>98%). Motion detection triggered an additional image volume acquisition with b=0 s/mm2 which was subsequently co-registered to a reference volume. In the prospective correction scenario, the calculated motion-parameters were applied to perform a real-time update of the gradient coordinate system to correct for the head movement. Quantitative analysis revealed that the motion correction implementation is capable to correct head motion in diffusion-weighted MRI to a level comparable to scans without voluntary head motion. The results indicate the potential of this method to improve image quality in diffusion-weighted MRI, a concept that can also be applied when highest diffusion weightings are performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Conventional magnetic resonance imaging (MRI) techniques are highly sensitive to detect multiple sclerosis (MS) plaques, enabling a quantitative assessment of inflammatory activity and lesion load. In quantitative analyses of focal lesions, manual or semi-automated segmentations have been widely used to compute the total number of lesions and the total lesion volume. These techniques, however, are both challenging and time-consuming, being also prone to intra-observer and inter-observer variability.Aim: To develop an automated approach to segment brain tissues and MS lesions from brain MRI images. The goal is to reduce the user interaction and to provide an objective tool that eliminates the inter- and intra-observer variability.Methods: Based on the recent methods developed by Souplet et al. and de Boer et al., we propose a novel pipeline which includes the following steps: bias correction, skull stripping, atlas registration, tissue classification, and lesion segmentation. After the initial pre-processing steps, a MRI scan is automatically segmented into 4 classes: white matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and partial volume. An expectation maximisation method which fits a multivariate Gaussian mixture model to T1-w, T2-w and PD-w images is used for this purpose. Based on the obtained tissue masks and using the estimated GM mean and variance, we apply an intensity threshold to the FLAIR image, which provides the lesion segmentation. With the aim of improving this initial result, spatial information coming from the neighbouring tissue labels is used to refine the final lesion segmentation.Results:The experimental evaluation was performed using real data sets of 1.5T and the corresponding ground truth annotations provided by expert radiologists. The following values were obtained: 64% of true positive (TP) fraction, 80% of false positive (FP) fraction, and an average surface distance of 7.89 mm. The results of our approach were quantitatively compared to our implementations of the works of Souplet et al. and de Boer et al., obtaining higher TP and lower FP values.Conclusion: Promising MS lesion segmentation results have been obtained in terms of TP. However, the high number of FP which is still a well-known problem of all the automated MS lesion segmentation approaches has to be improved in order to use them for the standard clinical practice. Our future work will focus on tackling this issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: This study was performed to compare the sensitivity of ultrasonography, computerized tomography during arterial portography, delayed computerized tomography, and magnetic resonance imaging to detect focal liver lesions. Forty three patients with primary or secondary malignant liver lesions were studied prior to surgical intervention. METHODS: The results of the imaging studies were compared with intraoperative examination of the liver, intraoperative ultrasonography and pathology results (29 patients). In the non-operated (14 patients) group, we compared the number of lesions detected by each technique. RESULTS: One hundred and forty six lesions were detected. There was 84% sensitivity with computerized tomography during arterial portography, 61.3% with delayed scan, 63.3% with magnetic resonance imaging and 51% with ultrasonography in operated patients. In patients who did not undergo surgery, magnetic resonance imaging was more sensitive in detecting lesions. CONCLUSIONS: In operated and non-operated patients series, CT during arterial portography had the highest sensitivity, but magnetic resonance imaging had the most consistent overall results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While 3D thin-slab coronary magnetic resonance angiography (MRA) has traditionally been performed using a Cartesian acquisition scheme, spiral k-space data acquisition offers several potential advantages. However, these strategies have not been directly compared in the same subjects using similar methodologies. Thus, in the present study a comparison was made between 3D coronary MRA using Cartesian segmented k-space gradient-echo and spiral k-space data acquisition schemes. In both approaches the same spatial resolution was used and data were acquired during free breathing using navigator gating and prospective slice tracking. Magnetization preparation (T(2) preparation and fat suppression) was applied to increase the contrast. For spiral imaging two different examinations were performed, using one or two spiral interleaves, during each R-R interval. Spiral acquisitions were found to be superior to the Cartesian scheme with respect to the signal-to-noise ratio (SNR) and contrast-to-noise-ratio (CNR) (both P < 0.001) and image quality. The single spiral per R-R interval acquisition had the same total scan duration as the Cartesian acquisition, but the single spiral had the best image quality and a 2.6-fold increase in SNR. The double-interleaf spiral approach showed a 50% reduction in scanning time, a 1.8-fold increase in SNR, and similar image quality when compared to the standard Cartesian approach. Spiral 3D coronary MRA appears to be preferable to the Cartesian scheme. The increase in SNR may be "traded" for either shorter scanning times using multiple consecutive spiral interleaves, or for enhanced spatial resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To compare volume-targeted and whole-heart coronary magnetic resonance angiography (MRA) after the administration of an intravascular contrast agent. MATERIALS AND METHODS: Six healthy adult subjects underwent a navigator-gated and -corrected (NAV) free breathing volume-targeted cardiac-triggered inversion recovery (IR) 3D steady-state free precession (SSFP) coronary MRA sequence (t-CMRA) (spatial resolution = 1 x 1 x 3 mm(3)) and high spatial resolution IR 3D SSFP whole-heart coronary MRA (WH-CMRA) (spatial resolution = 1 x 1 x 2 mm(3)) after the administration of an intravascular contrast agent B-22956. Subjective and objective image quality parameters including maximal visible vessel length, vessel sharpness, and visibility of coronary side branches were evaluated for both t-CMRA and WH-CMRA. RESULTS: No significant differences (P = NS) in image quality were observed between contrast-enhanced t-CMRA and WH-CMRA. However, using an intravascular contrast agent, significantly longer vessel segments were measured on WH-CMRA vs. t-CMRA (right coronary artery [RCA] 13.5 +/- 0.7 cm vs. 12.5 +/- 0.2 cm; P < 0.05; and left circumflex coronary artery [LCX] 11.9 +/- 2.2 cm vs. 6.9 +/- 2.4 cm; P < 0.05). Significantly more side branches (13.3 +/- 1.2 vs. 8.7 +/- 1.2; P < 0.05) were visible for the left anterior descending coronary artery (LAD) on WH-CMRA vs. t-CMRA. Scanning time and navigator efficiency were similar for both techniques (t-CMRA: 6.05 min; 49% vs. WH-CMRA: 5.51 min; 54%, both P = NS). CONCLUSION: Both WH-CMRA and t-CMRA using SSFP are useful techniques for coronary MRA after the injection of an intravascular blood-pool agent. However, the vessel conspicuity for high spatial resolution WH-CMRA is not inferior to t-CMRA, while visible vessel length and the number of visible smaller-diameter vessels and side-branches are improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate gadocoletic acid (B-22956), a gadolinium-based paramagnetic blood pool agent, for contrast-enhanced coronary magnetic resonance angiography (MRA) in a Phase I clinical trial, and to compare the findings with those obtained using a standard noncontrast T2 preparation sequence. MATERIALS AND METHODS: The left coronary system was imaged in 12 healthy volunteers before B-22956 application and 5 (N = 11) and 45 (N = 7) minutes after application of 0.075 mmol/kg of body weight (BW) of B-22956. Additionally, imaging of the right coronary system was performed 23 minutes after B-22956 application (N = 6). A three-dimensional gradient echo sequence with T2 preparation (precontrast) or inversion recovery (IR) pulse (postcontrast) with real-time navigator correction was used. Assessment of the left and right coronary systems was performed qualitatively (a 4-point visual score for image quality) and quantitatively in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, visible vessel length, maximal luminal diameter, and the number of visible side branches. RESULTS: Significant (P < 0.01) increases in SNR (+42%) and CNR (+86%) were noted five minutes after B-22956 application, compared to precontrast T2 preparation values. A significant increase in CNR (+40%, P < 0.05) was also noted 45 minutes postcontrast. Vessels (left anterior descending artery (LAD), left coronary circumflex (LCx), and right coronary artery (RCA)) were also significantly (P < 0.05) sharper on postcontrast images. Significant increases in vessel length were noted for the LAD (P < 0.05) and LCx and RCA (both P < 0.01), while significantly more side branches were noted for the LAD and RCA (both P < 0.05) when compared to precontrast T2 preparation values. CONCLUSION: The use of the intravascular contrast agent B-22956 substantially improves both objective and subjective parameters of image quality on high-resolution three-dimensional coronary MRA. The increase in SNR, CNR, and vessel sharpness minimizes current limitations of coronary artery visualization with high-resolution coronary MRA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) and spectroscopy (MRS) allow establishing theanatomical evolution and neurochemical profiles of ischemic lesions. However onlylimited MRS studies have been reported to-date in mice due to the challenges ofMRS in small organs. The aim of the current work was to study the neurochemicaland imaging sequelae of ischemic stroke in a mouse model in a horizontal bore14.1 Tesla system.ICR-CD1 mice were subjected to 30 minute transient middle cerebral artery occlusion.The extent of the lesion was determined by MRI. The neurochemical profileconsisting of the concentrations of 22 metabolites was measured longitudinallyfollowing the recovery from ischemia at 3, 8 and 24h in the striatum.Our model produced very reproducible striatal lesions which began to appear onT2-weighted images 8h after ischemia. At 24h, they were well established andtheir size correlated with lesions measured by histology. Profound changes couldbe observed in the neurochemical profiles of the core of the striatal lesions as earlyas 3h post-ischemia, in particular, we observed elevated lactate levels, decreases inthe putative neuronal marker N-acetyl-aspartate and in glutamate, and a transienttwo-fold glutamine increase, likely linked to excitotoxic release of glutamate andconversion to glutamine. With further ischemia evolution, other changes appearedat later time-points, mainly decreases of metabolites, consistent with disruption ofcellular function. It is interesting to note that glutamine tended to return to basallevels at 24h.We conclude that early changes in markers of energy metabolism, glutamate excitotoxicityand neuronal viability can be detected with high precision non-invasively inmice following stroke. Such investigations should lead to a better understanding andinsight into the sequential early changes in the brain parenchyma after ischemia,which could be used e.g. for identifying new targets for neuroprotection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Recent data suggest that beta-blockers can be beneficial in subgroups of patients with chronic heart failure (CHF). For metoprolol and carvedilol, an increase in ejection fraction has been shown and favorable effects on the myocardial remodeling process have been reported in some studies. We examined the effects of bisoprolol fumarate on exercise capacity and left ventricular volume with magnetic resonance imaging (MRI) and applied a novel high-resolution MRI tagging technique to determine myocardial rotation and relaxation velocity. METHODS: Twenty-eight patients (mean age, 57 +/- 11 years; mean ejection fraction, 26 +/- 6%) were randomized to bisoprolol fumarate (n = 13) or to placebo therapy (n = 15). The dosage of the drugs was titrated to match that of the the Cardiac Insufficiency Bisoprolol Study protocol. Hemodynamic and gas exchange responses to exercise, MRI measurements of left ventricular end-systolic and end-diastolic volumes and ejection fraction, and left ventricular rotation and relaxation velocities were measured before the administration of the drug and 6 and 12 months later. RESULTS: After 1 year, heart rate was reduced in the bisoprolol fumarate group both at rest (81 +/- 12 before therapy versus 61 +/- 11 after therapy; P <.01) and peak exercise (144 +/- 20 before therapy versus 127 +/- 17 after therapy; P <.01), which indicated a reduction in sympathetic drive. No differences were observed in heart rate responses in the placebo group. No differences were observed within or between groups in peak oxygen uptake, although work rate achieved was higher (117.9 +/- 36 watts versus 146.1 +/- 33 watts; P <.05) and exercise time tended to be higher (9.1 +/- 1.7 minutes versus 11.4 +/- 2.8 minutes; P =.06) in the bisoprolol fumarate group. A trend for a reduction in left ventricular end-diastolic volume (-54 mL) and left ventricular end-systolic volume (-62 mL) in the bisoprolol fumarate group occurred after 1 year. Ejection fraction was higher in the bisoprolol fumarate group (25.0 +/- 7 versus 36.2 +/- 9%; P <.05), and the placebo group remained unchanged. Most changes in volume and ejection fraction occurred during the latter 6 months of treatment. With myocardial tagging, insignificant reductions in left ventricular rotation velocity were observed in both groups, whereas relaxation velocity was reduced only after bisoprolol fumarate therapy (by 39%; P <.05). CONCLUSION: One year of bisoprolol fumarate therapy resulted in an improvement in exercise capacity, showed trends for reductions in end-diastolic and end-systolic volumes, increased ejection fraction, and significantly reduced relaxation velocity. Although these results generally confirm the beneficial effects of beta-blockade in patients with chronic heart failure, they show differential effects on systolic and diastolic function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A published formula containing minimal aortic cross-sectional area and the flow deceleration pattern in the descending aorta obtained by cardiovascular magnetic resonance predicts significant coarctation of the aorta (CoA). However, the existing formula is complicated to use in clinical practice and has not been externally validated. Consequently, its clinical utility has been limited. The aim of this study was to derive a simple and clinically practical algorithm to predict severe CoA from data obtained by cardiovascular magnetic resonance. Seventy-nine consecutive patients who underwent cardiovascular magnetic resonance and cardiac catheterization for the evaluation of native or recurrent CoA at Children's Hospital Boston (n = 30) and the University of California, San Francisco (n = 49), were retrospectively reviewed. The published formula derived from data obtained at Children's Hospital Boston was first validated from data obtained at the University of California, San Francisco. Next, pooled data from the 2 institutions were analyzed, and a refined model was created using logistic regression methods. Finally, recursive partitioning was used to develop a clinically practical prediction tree to predict transcatheter systolic pressure gradient ≥ 20 mm Hg. Severe CoA was present in 48 patients (61%). Indexed minimal aortic cross-sectional area and heart rate-corrected flow deceleration time in the descending aorta were independent predictors of CoA gradient ≥ 20 mm Hg (p <0.01 for both). A prediction tree combining these variables reached a sensitivity and specificity of 90% and 76%, respectively. In conclusion, the presented prediction tree on the basis of cutoff values is easy to use and may help guide the management of patients investigated for CoA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. METHODS AND MATERIALS: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. RESULTS: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. CONCLUSION: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration. AIM: To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function. METHODS: A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes. RESULTS: Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of -4.73 ± 1.75 ml (-8.67 ± 3.54%, r2 = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis "aligned" vs "not aligned" with the phantom long-axis yielded similar differences vs the reference volume (-4.87 ± 1.73 ml vs. -4.45 ± 1.97 ml, p = 0.67) and short-axis "perpendicular" vs. "not-perpendicular" with the LA long-axis (-4.72 ± 1.66 ml vs. -4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of "slice orientation" and "reconstruction technique", 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes in patients, it was validated in the LA phantoms (mean difference: -1.37 ± 1.35 ml, -2.38 ± 2.44%, r2 = 0.97). Patient study: The CS-cineCMR LA volumes of the mid-diastolic frame matched closely with the reference LA volume (measured by 3D-HR-CMR) with a difference of -2.66 ± 6.5 ml (3.0% underestimation; true LA volumes: 63 ml, 62 ml, and 395 ml). Finally, a high intra- and inter-observer agreement for maximal and minimal LA volume measurement is also shown. CONCLUSIONS: The proposed method combines a highly accelerated single-breathhold compressed-sensing multi-slice CMR technique with a non-model-based 3D reconstruction to accurately and reproducibly measure LA volumes and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is a chronic cardiovascular disease that involves the thicken¬ing of the artery walls as well as the formation of plaques (lesions) causing the narrowing of the lumens, in vessels such as the aorta, the coronary and the carotid arteries. Magnetic resonance imaging (MRI) is a promising modality for the assessment of atherosclerosis, as it is a non-invasive and patient-friendly procedure that does not use ionizing radiation. MRI offers high soft tissue con¬trast already without the need of intravenous contrast media; while modifica¬tion of the MR pulse sequences allows for further adjustment of the contrast for specific diagnostic needs. As such, MRI can create angiographic images of the vessel lumens to assess stenoses at the late stage of the disease, as well as blood flow-suppressed images for the early investigation of the vessel wall and the characterization of the atherosclerotic plaques. However, despite the great technical progress that occurred over the past two decades, MRI is intrinsically a low sensitive technique and some limitations still exist in terms of accuracy and performance. A major challenge for coronary artery imaging is respiratory motion. State- of-the-art diaphragmatic navigators rely on an indirect measure of motion, per¬form a ID correction, and have long and unpredictable scan time. In response, self-navigation (SM) strategies have recently been introduced that offer 100% scan efficiency and increased ease of use. SN detects respiratory motion di¬rectly from the image data obtained at the level of the heart, and retrospectively corrects the same data before final image reconstruction. Thus, SN holds po-tential for multi-dimensional motion compensation. To this regard, this thesis presents novel SN methods that estimate 2D and 3D motion parameters from aliased sub-images that are obtained from the same raw data composing the final image. Combination of all corrected sub-images produces a final image with reduced motion artifacts for the visualization of the coronaries. The first study (section 2.2, 2D Self-Navigation with Compressed Sensing) consists of a method for 2D translational motion compensation. Here, the use of com- pressed sensing (CS) reconstruction is proposed and investigated to support motion detection by reducing aliasing artifacts. In healthy human subjects, CS demonstrated an improvement in motion detection accuracy with simula¬tions on in vivo data, while improved coronary artery visualization was demon¬strated on in vivo free-breathing acquisitions. However, the motion of the heart induced by respiration has been shown to occur in three dimensions and to be more complex than a simple translation. Therefore, the second study (section 2.3,3D Self-Navigation) consists of a method for 3D affine motion correction rather than 2D only. Here, different techniques were adopted to reduce background signal contribution in respiratory motion tracking, as this can be adversely affected by the static tissue that surrounds the heart. The proposed method demonstrated to improve conspicuity and vi¬sualization of coronary arteries in healthy and cardiovascular disease patient cohorts in comparison to a conventional ID SN method. In the third study (section 2.4, 3D Self-Navigation with Compressed Sensing), the same tracking methods were used to obtain sub-images sorted according to the respiratory position. Then, instead of motion correction, a compressed sensing reconstruction was performed on all sorted sub-image data. This process ex¬ploits the consistency of the sorted data to reduce aliasing artifacts such that the sub-image corresponding to the end-expiratory phase can directly be used to visualize the coronaries. In a healthy volunteer cohort, this strategy improved conspicuity and visualization of the coronary arteries when compared to a con¬ventional ID SN method. For the visualization of the vessel wall and atherosclerotic plaques, the state- of-the-art dual inversion recovery (DIR) technique is able to suppress the signal coming from flowing blood and provide positive wall-lumen contrast. How¬ever, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. In response and as a fourth study of this thesis (chapter 3, Vessel Wall MRI of the Carotid Arteries), a phase-sensitive DIR method has been implemented and tested in the carotid arteries of a healthy volunteer cohort. By exploiting the phase information of images acquired after DIR, the proposed phase-sensitive method enhances wall-lumen contrast while widens the window of opportunity for image acquisition. As a result, a 3-fold increase in volumetric coverage is obtained at no extra cost in scanning time, while image quality is improved. In conclusion, this thesis presented novel methods to address some of the main challenges for MRI of atherosclerosis: the suppression of motion and flow artifacts for improved visualization of vessel lumens, walls and plaques. Such methods showed to significantly improve image quality in human healthy sub¬jects, as well as scan efficiency and ease-of-use of MRI. Extensive validation is now warranted in patient populations to ascertain their diagnostic perfor¬mance. Eventually, these methods may bring the use of atherosclerosis MRI closer to the clinical practice. Résumé L'athérosclérose est une maladie cardiovasculaire chronique qui implique le épaississement de la paroi des artères, ainsi que la formation de plaques (lé¬sions) provoquant le rétrécissement des lumières, dans des vaisseaux tels que l'aorte, les coronaires et les artères carotides. L'imagerie par résonance magné¬tique (IRM) est une modalité prometteuse pour l'évaluation de l'athérosclérose, car il s'agit d'une procédure non-invasive et conviviale pour les patients, qui n'utilise pas des rayonnements ionisants. L'IRM offre un contraste des tissus mous très élevé sans avoir besoin de médias de contraste intraveineux, tan¬dis que la modification des séquences d'impulsions de RM permet en outre le réglage du contraste pour des besoins diagnostiques spécifiques. À ce titre, l'IRM peut créer des images angiographiques des lumières des vaisseaux pour évaluer les sténoses à la fin du stade de la maladie, ainsi que des images avec suppression du flux sanguin pour une première enquête des parois des vais¬seaux et une caractérisation des plaques d'athérosclérose. Cependant, malgré les grands progrès techniques qui ont eu lieu au cours des deux dernières dé¬cennies, l'IRM est une technique peu sensible et certaines limitations existent encore en termes de précision et de performance. Un des principaux défis pour l'imagerie de l'artère coronaire est le mou¬vement respiratoire. Les navigateurs diaphragmatiques de pointe comptent sur une mesure indirecte de mouvement, effectuent une correction 1D, et ont un temps d'acquisition long et imprévisible. En réponse, les stratégies d'auto- navigation (self-navigation: SN) ont été introduites récemment et offrent 100% d'efficacité d'acquisition et une meilleure facilité d'utilisation. Les SN détectent le mouvement respiratoire directement à partir des données brutes de l'image obtenue au niveau du coeur, et rétrospectivement corrigent ces mêmes données avant la reconstruction finale de l'image. Ainsi, les SN détiennent un poten¬tiel pour une compensation multidimensionnelle du mouvement. A cet égard, cette thèse présente de nouvelles méthodes SN qui estiment les paramètres de mouvement 2D et 3D à partir de sous-images qui sont obtenues à partir des mêmes données brutes qui composent l'image finale. La combinaison de toutes les sous-images corrigées produit une image finale pour la visualisation des coronaires ou les artefacts du mouvement sont réduits. La première étude (section 2.2,2D Self-Navigation with Compressed Sensing) traite d'une méthode pour une compensation 2D de mouvement de translation. Ici, on étudie l'utilisation de la reconstruction d'acquisition comprimée (compressed sensing: CS) pour soutenir la détection de mouvement en réduisant les artefacts de sous-échantillonnage. Chez des sujets humains sains, CS a démontré une amélioration de la précision de la détection de mouvement avec des simula¬tions sur des données in vivo, tandis que la visualisation de l'artère coronaire sur des acquisitions de respiration libre in vivo a aussi été améliorée. Pourtant, le mouvement du coeur induite par la respiration se produit en trois dimensions et il est plus complexe qu'un simple déplacement. Par conséquent, la deuxième étude (section 2.3, 3D Self-Navigation) traite d'une méthode de cor¬rection du mouvement 3D plutôt que 2D uniquement. Ici, différentes tech¬niques ont été adoptées pour réduire la contribution du signal du fond dans le suivi de mouvement respiratoire, qui peut être influencé négativement par le tissu statique qui entoure le coeur. La méthode proposée a démontré une amélioration, par rapport à la procédure classique SN de correction 1D, de la visualisation des artères coronaires dans le groupe de sujets sains et des pa¬tients avec maladies cardio-vasculaires. Dans la troisième étude (section 2.4,3D Self-Navigation with Compressed Sensing), les mêmes méthodes de suivi ont été utilisées pour obtenir des sous-images triées selon la position respiratoire. Au lieu de la correction du mouvement, une reconstruction de CS a été réalisée sur toutes les sous-images triées. Cette procédure exploite la cohérence des données pour réduire les artefacts de sous- échantillonnage de telle sorte que la sous-image correspondant à la phase de fin d'expiration peut directement être utilisée pour visualiser les coronaires. Dans un échantillon de volontaires en bonne santé, cette stratégie a amélioré la netteté et la visualisation des artères coronaires par rapport à une méthode classique SN ID. Pour la visualisation des parois des vaisseaux et de plaques d'athérosclérose, la technique de pointe avec double récupération d'inversion (DIR) est capa¬ble de supprimer le signal provenant du sang et de fournir un contraste posi¬tif entre la paroi et la lumière. Pourtant, il est difficile d'obtenir un contraste optimal car cela est soumis à la variabilité du rythme cardiaque. Par ailleurs, l'imagerie DIR est inefficace du point de vue du temps et les acquisitions "mul- tislice" peuvent conduire à des temps de scan prolongés. En réponse à ce prob¬lème et comme quatrième étude de cette thèse (chapitre 3, Vessel Wall MRI of the Carotid Arteries), une méthode de DIR phase-sensitive a été implémenté et testé