119 resultados para Thymic stromal cells


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cardiospheres (CSs) are self-assembling multicellular clusters from the cellular outgrowth from cardiac explants cultured in nonadhesive substrates. They contain a core of primitive, proliferating cells, and an outer layer of mesenchymal/stromal cells and differentiating cells that express cardiomyocyte proteins and connexin 43. Because CSs contain both primitive cells and committed progenitors for the three major cell types present in the heart, that is, cardiomyocytes, endothelial cells, and smooth muscle cells, and because they are derived from percutaneous endomyocardial biopsies, they represent an attractive cell source for cardiac regeneration. In preclinical studies, CS-derived cells (CDCs) delivered to infarcted hearts resulted in improved cardiac function. CDCs have been tested safely in an initial phase-1 clinical trial in patients after myocardial infarction. Whether or not CDCs are superior to purified populations, for example, c-kit(+) cardiac stem cells, or to gene therapy approaches for cardiac regeneration remains to be evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fibroblastic reticular cells (FRC) form the structural backbone of the T cell rich zones in secondary lymphoid organs (SLO), but also actively influence the adaptive immune response. They provide a guidance path for immigrating T lymphocytes and dendritic cells (DC) and are the main local source of the cytokines CCL19, CCL21, and IL-7, all of which are thought to positively regulate T cell homeostasis and T cell interactions with DC. Recently, FRC in lymph nodes (LN) were also described to negatively regulate T cell responses in two distinct ways. During homeostasis they express and present a range of peripheral tissue antigens, thereby participating in peripheral tolerance induction of self-reactive CD8(+) T cells. During acute inflammation T cells responding to foreign antigens presented on DC very quickly release pro-inflammatory cytokines such as interferon γ. These cytokines are sensed by FRC which transiently produce nitric oxide (NO) gas dampening the proliferation of neighboring T cells in a non-cognate fashion. In summary, we propose a model in which FRC engage in a bidirectional crosstalk with both DC and T cells to increase the efficiency of the T cell response. However, during an acute response, FRC limit excessive expansion and inflammatory activity of antigen-specific T cells. This negative feedback loop may help to maintain tissue integrity and function during rapid organ growth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Summary : The chemokines CCL19 and CCL21 and their common receptor CCR7 attract antigenpresenting dendritic cells (DCs) and naive T cells into the T zone of secondary lymphoid organs (SLO) and are therefore critically involved in homeostatic T cell recirculation and the initiation of adaptive immune responses. In addition. CCR7 ligands were proposed to mediate T cell exit from neonatal thymus, allowing colonization of T zones in SLOB. The relative contribution of CCL19 and CCL21 to these processes has remained unclear, as they were studied in mouse models lacking either CCR7 or both ligands. The aim of my thesis was to characterize Cc119-' mice and thereby investigate the relative roles of the two CCR7 ligands in development, homeostasis and immune response. The first study addressed the role of CCR7 ligands in DC biology. We found that CCL19 is dispensable for DC migration to lymph nodes and their localization to T zones. Furthermore, a CCL19-deficient environment did not lead to a defect in DC maturation or T cell priming. Therefore, CCL21 is sufficient to mediate CCR7-dependent processes during the initiation of adaptive immune responses. In the second study we investigated how the two CCR7 ligands affect CCR7 expression and function on naive T cells. We found that in SLOB CCR7 is constantly occupied with CCL19 and CCL21, eventually leading to its internalization. The reduced level of free CCR7 on these cells led to diminished ligand sensitivity and consequently impaired chemotactic responses. This effect was reversible by passage through aCCR7 ligand-free environment like the blood circulation. We propose that the different states of ligand sensitivity in SLOB and blood are important to allow for proper T cell recirculation. In the third study the role of CCL19 in neonatal thymus and spleen was analyzed. While neonatal Cc119-!- mice had no defect in thymic egress, we observed reduced T cell accumulation in the spleen but not lymph nodes. We identified reticular stromal cells in the developing white pulp (WP) as the major CCL 19 source. The development of these WP stromal cells as well as their CCL19 expression were dependent on LTalß2+ B cells. In conclusion, we have found that CCL21 can mostly compensate for lack of CCL19 in homeostasis and immunity. In contrast, during development. CCL19 has anon-redundant function for T cell colonization of the spleen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Major histocompatibility complex class II (MHCII) expression is regulated by the transcriptional coactivator CIITA. Positive selection of CD4(+) T cells is abrogated in mice lacking one of the promoters (pIV) of the Mhc2ta gene. This is entirely due to the absence of MHCII expression in thymic epithelia, as demonstrated by bone marrow transfer experiments between wild-type and pIV(-/-) mice. Medullary thymic epithelial cells (mTECs) are also MHCII(-) in pIV(-/-) mice. Bone marrow-derived, professional antigen-presenting cells (APCs) retain normal MHCII expression in pIV(-/-) mice, including those believed to mediate negative selection in the thymic medulla. Endogenous retroviruses thus retain their ability to sustain negative selection of the residual CD4(+) thymocytes in pIV(-/-) mice. Interestingly, the passive acquisition of MHCII molecules by thymocytes is abrogated in pIV(-/-) mice. This identifies thymic epithelial cells as the source of this passive transfer. In peripheral lymphoid organs, the CD4(+) T-cell population of pIV(-/-) mice is quantitatively and qualitatively comparable to that of MHCII-deficient mice. It comprises a high proportion of CD1-restricted natural killer T cells, which results in a bias of the V beta repertoire of the residual CD4(+) T-cell population. We have also addressed the identity of the signal that sustains pIV expression in cortical epithelia. We found that the Jak/STAT pathways activated by the common gamma chain (CD132) or common beta chain (CDw131) cytokine receptors are not required for MHCII expression in thymic cortical epithelia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The precise mechanisms underlying the interaction between intestinal bacteria and the host epithelium lead to multiple consequences that remain poorly understood at the molecular level. Deciphering such events can provide valuable information as to the mode of action of commensal and probiotic microorganisms in the gastrointestinal environment. Potential roles of such microorganisms along the privileged target represented by the mucosal immune system include maturation prior, during and after weaning, and the reduction of inflammatory reactions in pathogenic conditions. Using human intestinal epithelial Caco-2 cell grown as polarized monolayers, we found that association of a Lactobacillus or a Bifidobacterium with nonspecific secretory IgA (SIgA) enhanced probiotic adhesion by a factor of 3.4-fold or more. Bacteria alone or in complex with SIgA reinforced transepithelial electrical resistance, a phenomenon coupled with increased phosphorylation of tight junction proteins zonula occludens-1 and occludin. In contrast, association with SIgA resulted in both enhanced level of nuclear translocation of NF-κB and production of epithelial polymeric Ig receptor as compared with bacteria alone. Moreover, thymic stromal lymphopoietin production was increased upon exposure to bacteria and further enhanced with SIgA-based complexes, whereas the level of pro-inflammatory epithelial cell mediators remained unaffected. Interestingly, SIgA-mediated potentiation of the Caco-2 cell responsiveness to the two probiotics tested involved Fab-independent interaction with the bacteria. These findings add to the multiple functions of SIgA and underscore a novel role of the antibody in interaction with intestinal bacteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stromal scaffold of the lymph node (LN) paracortex is built by fibroblastic reticular cells (FRCs). Conditional ablation of lymphotoxin-β receptor (LTβR) expression in LN FRCs and their mesenchymal progenitors in developing LNs revealed that LTβR-signaling in these cells was not essential for the formation of LNs. Although T cell zone reticular cells had lost podoplanin expression, they still formed a functional conduit system and showed enhanced expression of myofibroblastic markers. However, essential immune functions of FRCs, including homeostatic chemokine and interleukin-7 expression, were impaired. These changes in T cell zone reticular cell function were associated with increased susceptibility to viral infection. Thus, myofibroblasic FRC precursors are able to generate the basic T cell zone infrastructure, whereas LTβR-dependent maturation of FRCs guarantees full immunocompetence and hence optimal LN function during infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Inflammasome activation with the production of IL-1 beta received substantial attention recently in inflammatory diseases. However, the role of inflammasome in the pathogenesis of asthma is not clear. Using an adjuvant-free model of allergic lung inflammation induced by ovalbumin (OVA), we investigated the role of NLRP3 inflammasome and related it to IL-1R1 signaling pathway.Methods: Allergic lung inflammation induced by OVA was evaluated in vivo in mice deficient in NLRP3 inflammasome, IL-1R1, IL-1 beta or IL-1 alpha. Eosinophil recruitment, Th2 cytokine, and chemokine levels were determined in bronchoalveolar lavage fluid, lung homogenates, and mediastinal lymph node cells ex vivo.Results: Allergic airway inflammation depends on NLRP3 inflammasome activation. Dendritic cell recruitment into lymph nodes, Th2 lymphocyte activation in the lung and secretion of Th2 cytokines and chemokines are reduced in the absence of NLRP3. Absence of NLRP3 and IL-1 beta is associated with reduced expression of other proinflammatory cytokines such as IL-5, IL-13, IL-33, and thymic stromal lymphopoietin. Furthermore, the critical role of IL-1R1 signaling in allergic inflammation is confirmed in IL-1R1-, IL-1 beta-, and IL-1 alpha-deficient mice.Conclusion: NLRP3 inflammasome activation leading to IL-1 production is critical for the induction of a Th2 inflammatory allergic response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tissue-specific stem cells found in adult tissues can participate in the repair process following injury. However, adult tissues, such as articular cartilage and intervertebral disc, have low regeneration capacity, whereas fetal tissues, such as articular cartilage, show high regeneration ability. The presence of fetal stem cells in fetal cartilaginous tissues and their involvement in the regeneration of fetal cartilage is unknown. The aim of the study was to assess the chondrogenic differentiation and the plasticity of fetal cartilaginous cells. We compared the TGF-β3-induced chondrogenic differentiation of human fetal cells isolated from spine and cartilage tissues to that of human bone marrow stromal cells (BMSC). Stem cell surface markers and adipogenic and osteogenic plasticity of the two fetal cell types were also assessed. TGF-β3 stimulation of fetal cells cultured in high cell density led to the production of aggrecan, type I and II collagens, and variable levels of type X collagen. Although fetal cells showed the same pattern of surface stem cell markers as BMSCs, both type of fetal cells had lower adipogenic and osteogenic differentiation capacity than BMSCs. Fetal cells from femoral head showed higher adipogenic differentiation than fetal cells from spine. These results show that fetal cells are already differentiated cells and may be a good compromise between stem cells and adult tissue cells for a cell-based therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The generation of lymphoid microenvironments in early life depends on the interaction of lymphoid tissue-inducer cells with stromal lymphoid tissue-organizer cells. Whether this cellular interface stays operational in adult secondary lymphoid organs has remained elusive. We show here that during acute infection with lymphocytic choriomeningitis virus, antiviral cytotoxic T cells destroyed infected T cell zone stromal cells, which led to profound disruption of secondary lymphoid organ integrity. Furthermore, the ability of the host to respond to secondary antigens was lost. Restoration of the lymphoid microanatomy was dependent on the proliferative accumulation of lymphoid tissue-inducer cells in secondary lymphoid organs during the acute phase of infection and lymphotoxin alpha(1)beta(2) signaling. Thus, crosstalk between lymphoid tissue-inducer cells and stromal cells is reactivated in adults to maintain secondary lymphoid organ integrity and thereby contributes to the preservation of immunocompetence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. However, much less is known about the consequences of loss of Notch signaling after birth. METHODOLOGY AND PRINCIPAL FINDINGS: To study the function of Notch signaling in the skin of adult mice, we made use of a series of conditional gene targeted mice that allow inactivation of several components of the Notch signaling pathway specifically in the skin. We demonstrate that skin-specific inactivation of Notch1 and Notch2 simultaneously, or RBP-J, induces the development of a severe form of atopic dermatitis (AD), characterized by acanthosis, spongiosis and hyperkeratosis, as well as a massive dermal infiltration of eosinophils and mast cells. Likewise, patients suffering from AD, but not psoriasis or lichen planus, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes induces the production of thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. The AD-like associated inflammation is accompanied by a myeloproliferative disorder (MPD) characterized by an increase in immature myeloid populations in the bone marrow and spleen. Transplantation studies revealed that the MPD is cell non-autonomous and caused by dramatic microenvironmental alterations. Genetic studies demontrated that G-CSF mediates the MPD as well as changes in the bone marrow microenvironment leading to osteopenia. SIGNIFICANCE: Our data demonstrate a critical role for Notch in repressing TSLP production in keratinocytes, thereby maintaining integrity of the skin and the hematopoietic system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Embryonic stem cells (ESCs) offer attractive prospective as potential source of neurons for cell replacement therapy in human neurodegenerative diseases. Besides, ESCs neural differentiation enables in vitro tissue engineering for fundamental research and drug discovery aimed at the nervous system. We have established stable and long-term three-dimensional (3D) culture conditions which can be used to model long latency and complex neurodegenerative diseases. Mouse ESCs-derived neural progenitor cells generated by MS5 stromal cells induction, result in strictly neural 3D cultures of about 120-mum thick, whose cells expressed mature neuronal, astrocytes and myelin markers. Neurons were from the glutamatergic and gabaergic lineages. This nervous tissue was spatially organized in specific layers resembling brain sub-ependymal (SE) nervous tissue, and was maintained in vitro for at least 3.5 months with great stability. Electron microscopy showed the presence of mature synapses and myelinated axons, suggesting functional maturation. Electrophysiological activity revealed biological signals involving action potential propagation along neuronal fibres and synaptic-like release of neurotransmitters. The rapid development and stabilization of this 3D cultures model result in an abundant and long-lasting production that is compatible with multiple and productive investigations for neurodegenerative diseases modeling, drug and toxicology screening, stress and aging research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metastatic growth in distant organs is the major cause of cancer mortality. The development of metastasis is a multistage process with several rate-limiting steps. Although dissemination of tumour cells seems to be an early and frequent event, the successful initiation of metastatic growth, a process termed 'metastatic colonization', is inefficient for many cancer types and is accomplished only by a minority of cancer cells that reach distant sites. Prevalent target sites are characteristic of many tumour entities, suggesting that inadequate support by distant tissues contributes to the inefficiency of the metastatic process. Here we show that a small population of cancer stem cells is critical for metastatic colonization, that is, the initial expansion of cancer cells at the secondary site, and that stromal niche signals are crucial to this expansion process. We find that periostin (POSTN), a component of the extracellular matrix, is expressed by fibroblasts in the normal tissue and in the stroma of the primary tumour. Infiltrating tumour cells need to induce stromal POSTN expression in the secondary target organ (in this case lung) to initiate colonization. POSTN is required to allow cancer stem cell maintenance, and blocking its function prevents metastasis. POSTN recruits Wnt ligands and thereby increases Wnt signalling in cancer stem cells. We suggest that the education of stromal cells by infiltrating tumour cells is an important step in metastatic colonization and that preventing de novo niche formation may be a novel strategy for the treatment of metastatic disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated a new procedure for gene transfer into the stroma of pig cornea for the delivery of therapeutic factors. A delimited space was created at 110 mum depth with a LDV femtosecond laser in pig corneas, and a HIV1-derived lentiviral vector expressing green fluorescent protein (GFP) (LV-CMV-GFP) was injected into the pocket. Corneas were subsequently dissected and kept in culture as explants. After 5 days, histological analysis of the explants revealed that the corneal pockets had closed and that the gene transfer procedure was efficient over the whole pocket area. Almost all the keratocytes were transduced in this area. Vector diffusion at right angles to the pocket's plane encompasses four (endothelium side) to 10 (epithelium side) layers of keratocytes. After 21 days, the level of transduction was similar to the results obtained after 5 days. The femtosecond laser technique allows a reliable injection and diffusion of lentiviral vectors to efficiently transduce stromal cells in a delimited area. Showing the efficacy of this procedure in vivo could represent an important step toward treatment or prevention of recurrent angiogenesis of the corneal stroma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO) thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS) was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/-) mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CD4+CD3- cells are the predominant hematopoietic cells found in mouse fetal intestine. We prove their role as Peyer's patch (PP)-inducing cells by transfer into neonatal PP-deficient mice. To test the requirement of chemokines and adhesion molecules in induction of PP, we studied mice deficient in CXCR5 and/or alpha4beta1 integrin-mediated adhesion. CXCR5-/- mice have CD4+CD3- cells, which are inefficient in inducing PP formation. We show here that CXCR5/CXCL13 signaling activates alpha4beta1 integrin on CD4+CD3- cells. Blocking of beta1 integrin or VCAM-1, the ligand of alpha4beta1 integrin, inhibits PP formation. This study demonstrates the link between chemokine receptors and adhesion molecules that regulates stromal/hematopoietic cell interaction leading to PP formation.