51 resultados para T84 colon cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

FXYD3 (Mat-8) proteins are regulators of Na,K-ATPase. In normal tissue, FXYD3 is mainly expressed in stomach and colon, but it is also overexpressed in cancer cells, suggesting a role in tumorogenesis. We show that FXYD3 silencing has no effect on cell proliferation but promotes cell apoptosis and prevents cell differentiation of human colon adenocarcinoma cells (Caco-2), which is reflected by a reduction in alkaline phosphatase and villin expression, a change in several other differentiation markers, and a decrease in transepithelial resistance. Inhibition of cell differentiation in FXYD3-deficient cells is accompanied by an increase in the apparent Na+ and K+ affinities of Na,K-ATPase, reflecting the absence of Na,K-pump regulation by FXYD3. In addition, we observe a decrease in the maximal Na,K-ATPase activity due to a decrease in its turnover number, which correlates with a change in Na,K-ATPase isozyme expression that is characteristic of cancer cells. Overall, our results suggest an important role of FXYD3 in cell differentiation of Caco-2 cells. One possibility is that FXYD3 silencing prevents proper regulation of Na,K-ATPase, which leads to perturbation of cellular Na+ and K+ homeostasis and changes in the expression of Na,K-ATPase isozymes, whose functional properties are incompatible with Caco-2 cell differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding and penetration of two 125I-labeled anti-carcinoembryonic antigen (CEA) monoclonal antibodies (MAb) and their F(ab')2 and Fab fragments were measured in multicellular spheroids of poorly (HT29) and moderately well differentiated (Co112) human colon adenocarcinomas which express different amounts of CEA. Spheroids cultured in vitro model tumor microenvironments where poor vascular supply may modulate antigen expression and accessibility. The two MAb studied, 202 and 35, were shown previously to react with different CEA epitopes and to have high affinities of 1.2 and 5.8 X 10(9) M-1, respectively. MAb 202 has also been shown to cross-react with antigens present on human granulocytes and normal epithelial cells from human lung and pancreas. Specific binding of intact MAb and fragments of both antibodies was demonstrated for both types of human colon carcinoma spheroids compared to mouse colon carcinoma (CL26) and mammary tumor (EMT6/Ro) spheroids. Total binding of MAb and fragments was greater (1.5- to 2.5-fold) after 4 h compared to 1 h of exposure; the amount of binding compared to control IgG1 was 5- to 30-fold greater after 1-h incubation and 15 to 200 times greater after 4 h. This binding was stable as demonstrated by short and long wash experiments at 37 degrees and 4 degrees C. The binding of F(ab')2 and Fab fragments of the anti-CEA MAb 35 to spheroids of human colon Co112 was almost 2-fold greater than that of the intact MAb. However, for MAb 202, the binding of intact MAb and F(ab')2 was greater than that of Fab fragments. In addition the binding of both intact and F(ab')2 fragments of MAb 202 was greater than that obtained with MAb 35. Specific binding of both antibodies to HT29 spheroids, which express less CEA, was decreased for MAb and fragments of both 202 and 35. Autoradiography and immunoperoxidase experiments were performed to determine the penetration of MAb and fragments after incubation with intact spheroids. Comparisons were made with labeled MAb directly applied to frozen sections of spheroids. F(ab')2 and Fab fragments of both antibodies were bound at the surface of intact spheroids and penetrated to eight to ten cells, but the intact MAb were localized mainly at the spheroid surface and the outer one to three cell layers. There was much less binding at the surfaces of HT29 compared to Co112 spheroids. An enzyme immunoassay using MAb 35 and 202 demonstrated that Co112 spheroids produced about 8-fold more CEA/mg of cell protein than did monolayer cultures.(ABSTRACT TRUNCATED AT 400 WORDS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian target of rapamycin (mTOR), which exists in two functionally distinct complexes, mTORC1 and mTORC2 plays an important role in tumor growth. Whereas the role of mTORC1 has been well characterized in this process, little is known about the functions of mTORC2 in cancer progression. In this study, we explored the specific role of mTORC2 in colon cancer using a short hairpin RNA expression system to silence the mTORC2-associated protein rictor. We found that downregulation of rictor in HT29 and LS174T colon cancer cells significantly reduced cell proliferation. Knockdown of rictor also resulted in a G1 arrest as observed by cell cycle analysis. We further observed that LS174T cells deficient for rictor failed to form tumors in a nude mice xenograft model. Taken together, these results show that the inhibition of mTORC2 reduces colon cancer cell proliferation in vitro and tumor xenograft formation in vivo. They also suggest that specifically targeting mTORC2 may provide a novel treatment strategy for colorectal cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four monoclonal antibodies against carcinoembryonic antigen (CEA) have been selected from 32 hybrids that produce antibodies against this antigen, by the criteria of high affinity for CEA and low cross-reactivity with granulocyte glycoprotein(s). The specificity of tumor localization in vivo of the four MAb, and their F(ab')2 and Fab fragments was compared in nude mice bearing grafts of a serially transplanted, CEA-producing, human colon carcinoma. The distribution of radiolabeled MAb and their fragments after intravenous injection was analyzed by direct measurement of radioactivity in tumor and normal organs, as well as by whole-body scanning and by autoradiography of tumor sections. Paired labeling experiments, in which 131I-labeled antibody or fragments and 125I-labeled control IgG are injected simultaneously, were undertaken to determine the relative tumor uptakes of each labeled protein. The tumor antibody uptake divided by that of control IgG defines the specificity index of localization. Tumor antibody uptakes (as compared with the whole mouse), ranging between 7 and 15, and specificity indices ranging between 3.4 and 6.8, were obtained with the four intact MAb at day 4-5 after injection. With F(ab')2 fragments of the four MAb, at day 3, the tumor antibody uptakes ranged between 12 and 24 and the specificity indices between 5.3 and 8.2. With the Fab fragments prepared from the two most promising MAb, the antibody uptakes reached values of 34 and 82 at day 2-3 and the specificity indices were as high as 12 and 19. The scanning results paralleled those obtained by direct measurement of radioactivity. With intact MAb, tumor grafts of 0.5-1 g gave very contrasted positive scans 3 d after injection. Using MAb fragments, tumors of smaller size were detectable earlier. The best results were obtained with Fab fragments of MAb 35, which gave clear detections of tumors weighing only 0.1 g as early as 48 h after injection. Autoradiographs of tumor sections from mice injected with 125I-labeled MAb demonstrated that the radioactivity was localized in the tumor tissues and not in the stromal connective tissue of mouse origin. The highest radioactivity concentration was localized in areas known to contain CEA such as the pseudolumen of glands and the apical side of carcinoma cells. The penetration of radioactivity in the central part of tumor nodules and the pseudolumen appeared to be increased with the use of MAb fragments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. RESULTS: We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. CONCLUSIONS: This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroblastoma (NB) is the most common extracranial malignant tumor in young children and arises at any site of the sympathetic nervous system. The disease exhibits a remarkable phenotypic diversity ranging from spontaneous regression to fatal disease. Poor outcome results from a rapidly progressive, metastatic and drug-resistant disease. Recent studies have suggested that solid tumors may arise from a minor population of cancer stem cells (CSCs) with stem cell markers and typical properties such as self-renewal ability, asymmetric division and drug resistance. In this model, CSCs possess the exclusive ability to initiate and maintain the tumor, and to produce distant metastases. Tumor cell subpopulations with stem-like phenotypes have indeed been identified in several cancer including leukemia, breast, brain and colon cancers. CSC hypothesis still needs to be validated in the other cancers including NB.NB originates from neural crest-derived malignant sympatho-adrenal cells. We have identified rare cells that express markers in conformity with neural crest stem cells and their derived lineages within primary NB tissue and cell lines, leading us to postulate the existence of CSCs in NB tumors.In the absence of specific markers to isolate CSCs, we adapted to NB tumor cells the sphere functional assay, based on the ability of stem cells to grow as spheres in non-adherent conditions. By serial passages of spheres from bone marrow NB metastases, a subset of cells was gradually selected and its specific gene expression profile identified by micro-array time-course analysis. The differentially expressed genes in spheres are enriched in genes implicated in development including CD133, ABC-transporters, WNT and NOTCH genes, identified in others solid cancers as CSCs markers, and other new markers, all referred by us as the Neurosphere Expression Profile (NEP). We confirmed the presence of a cell subpopulation expressing a combination of the NEP markers within a few primary NB samples.The tumorigenic potential of NB spheres was assayed by in vivo tumor growth analyses using orthotopic (adrenal glands) implantations of tumor cells into immune-compromised mice. Tumors derived from the sphere cells were significantly more frequent and were detected earlier compared to whole tumor cells. However, NB cells expressing the neurosphere-associated genes and isolated from the bulk tumors did not recapitulate the CSC-like phenotype in the orthotopic model. In addition, the NB sphere cells lost their higher tumorigenic potential when implanted in a subcutaneous heterotopic in vivo model.These results highlighted the complex behavior of CSC functions and led us to consider the stem-like NB cells as a dynamic and heterogeneous cell population influenced by microenvironment signals.Our approach identified for the first time candidate genes that may be associated with NB self-renewal and tumorigenicity and therefore would establish specific functional targets for more effective therapies in aggressive NB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two different monoclonal antibodies (MAb), called L-D1 and L-C5, were produced after immunization with either intact cells or the methanol phase of glycolipid extracts, respectively, from the same human colon carcinoma line, LoVo. As determined by an antibody-binding radioimmunoassay (RIA) on intact cells, MAb L-D1 and MAb L-C5 were highly reactive with all five colon carcinoma lines tested and with only one out of the 21 cell lines of various tissue origin tested. No reactivity of either MAb was observed with peripheral blood lymphocytes, granulocytes, or erythrocytes from healthy donors of various blood groups. Both MAb were tested in competitive binding experiments with an anti-CEA MAb from our laboratory (CEA 35) and with two previously described anti-colon carcinoma MAb from the Wistar Institute called 1083-17-1A (17-1A) and NS-19.9. In competitive binding experiments, MAb L-D1 was inhibited by MAb 17-1A and reciprocally, whereas MAb L-C5 was not inhibited by any of the other MAb tested. MAb L-D1 precipitated a major protein band with an apparent molecular weight (MW) of 41 kilodaltons (kD); interestingly, MAb 17-1A, which was reported to react with an uncharacterized antigen, precipitated the same protein band of 41 kD. This was confirmed with immunodepletion experiments. Furthermore, after treatment of the colon carcinoma cell line with tunicamycin, both MAb L-D1 and 17-1A precipitated a protein band of 35 kD. This shift of 6 kD suggests that the glycoprotein recognized by these 2 MAb contains two to three N-linked carbohydrate side chains. MAb L-C5 precipitated a group of three to four protein bands ranging from 43 to 53 kD that were not modified by tunicamycin treatment. A preliminary study conducted by using immunoperoxidase labeling on frozen sections of primary colon carcinoma showed that the two new MAb react strongly with these tumors, but also weakly with the normal adjacent mucosa, as did the other anti-colon carcinoma MAb tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy is effective in treating some Crohn's disease (CD) patients and protects mice from colitis induced by dextran sulfate sodium (DSS) administration. However, its mechanisms of action remain elusive. We hypothesized that GM-CSF affects intestinal mucosal repair. METHODS: DSS colitic mice were treated with daily pegylated GM-CSF or saline and clinical, histological, and inflammatory parameters were kinetically evaluated. Further, the role of bone marrow-derived cells in the impact of GM-CSF therapy on DSS colitis was addressed using cell transfers. RESULTS: GM-CSF therapy reduced clinical signs of colitis and the release of inflammatory mediators. GM-CSF therapy improved mucosal repair, with faster ulcer reepithelialization, accelerated hyperproliferative response of epithelial cells in ulcer-adjacent crypts, and lower colonoscopic ulceration scores in GM-CSF-administered mice relative to untreated mice. We observed that GM-CSF-induced promotion of mucosal repair is timely associated with a reduction in neutrophil numbers and increased accumulation of CD11b(+) monocytic cells in colon tissues. Importantly, transfer of splenic GM-CSF-induced CD11b(+) myeloid cells into DSS-exposed mice improved colitis, and lethally irradiated GM-CSF receptor-deficient mice reconstituted with wildtype bone marrow cells were protected from DSS-induced colitis upon GM-CSF therapy. Lastly, GM-CSF-induced CD11b(+) myeloid cells were shown to promote in vitro wound repair. CONCLUSIONS: Our study shows that GM-CSF-dependent stimulation of bone marrow-derived cells during DSS-induced colitis accelerates colonic tissue repair. These data provide a putative mechanism for the observed beneficial effects of GM-CSF therapy in Crohn's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antisera highly specific for carcinoembryonic antigen (CEA) from New Zealand White rabbits and a goat reacted strongly in antibody binding tests with cultured tumor cell lines, irrespective of the ability of the cell lines to produce CEA. The most reactive were colon carcinoma and melanoma cell lines, the former known to produce CEA and the latter not associated with CEA production. The reactivity was not diminished by absorption with perchloric acid extracts of normal lung or spleen, whereas absoprtion with purified CEA preparations abolished the reactivity. Quantitative absorption studies indicated that reactivity against CEA-producing cell lines could be totally removed by absorption with other CEA-producing lines but not with melanoma cell lines. Reactivity against melanoma cell lines could be completely removed by colon carcinoma cells as well as by melanoma cells. Antisera raised against purified CEA, after absorption with extracts of normal lung, still contained two populations of antibodies, one that binds a newly described antigen cross-reacting with CEA which is present on melanoma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4(+) T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4(+) T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+) T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+) T cells and forkhead box P3 (FoxP3)(+) regulatory T (Treg) cells. IFN-γ produced mainly by CD4(+) T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans les cellules épithéliales sensibles à l'aldostérone, le canal sodique épithélial (ENaC) joue un rôle critique dans le contrôle de l'équilibre sodique, le volume sanguin, et la pression sanguine. Le rôle d'ENaC est bien caractérisé dans le rein et les poumons, cependant le rôle d'ENaC et son régulateur positif la protéase activatrice de canal 1 (CAP1 /Prss8) sur le transport sodique dans le côlon reste en grande partie inconnu. Nous avons étudié l'importance d'ENaC et de CAPMPrss8 dans le côlon. Les souris déficientes pour la sous- unité aENaC (souris ScnnlaKO) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diète normale (RS) ou pauvre en sodium (LS), la différence de potentiel rectale sensible à l'amiloride (APDamii) était drastiquement diminuée et son rythme circadien atténué. Sous diète normale (RS) ou diète riche en sodium (HS) ou fort chargement de potassium, le sodium et le potassium plasmatique et urinaire n'étaient pas significativement changé. Cependant, sous LS, les souris Senni aK0 perdaient des quantités significativement augmentées de sodium dans leurs fèces, accompagnées par de très hauts taux d'aldostérone plasmatique et une rétention urinaire en sodium augmentée. Les souris déficientes en CAPl/PmS (Prss8K0) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diètes RS et HS cependant, les souris Prss8KO montraient une diminution significative du APDamil dans l'après-midi, mais le rythme circadien était maintenu. Sous diète LS, la perte de sodium par les fèces était accompagnée par des niveaux d'aldostérone plasmatiques plus élevés. Par conséquent, nous avons identifié la protéase activatrice de canal CAP 1 IPrss8 comme un régulateur important d'ENaC dans le côlon in vivo. De plus, nous étudions l'importance d'ENaC et de CAPIIPrss8 dans les conditions pathologiques comme les maladies inflammatoires chroniques de l'intestin (MICI). Le résultat préliminaire out montre qu'une déficience d'Prss8 mènait à la détérioration de la colite induite par le DSS comparé aux modèles contrôles respectifs. En résumé, l'étude a montré que sous restriction de sel, l'absence d'ENaC dans Pépithélium de surface du côlon était compensée par 1'activation du système rénine-angiotensine- aldostérone (RAAS) dans le rein. Ceci a mené à un pseudohypoaldostéronisme de type I spécifique au côlon avec résistance aux minéralocorticoïdes sans signe d'altération de rétention de potassium. - In aldosterone-responsive epithelial cells of kidney and colon, the epithelial sodium channel (ENaC) plays a critical role in the control of sodium balance, blood volume, and blood pressure. The role of ENaC is well characterized in kidney and lung, whereas role of ENaC and its positive regulator channel-activating protease 1 (CAPl/PrasS) on sodium transport in colon is largely unknown. We have investigated the importance of ENaC and CAPI/Prss8 in colon for sodium and potassium balance. Mice lacking the aENaC subunit (Scnnla mice) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Under regular (RS) or low salt (LS) diet, the amiloride sensitive rectal potential difference (APDamii) was drastically decreased and its circadian rhythm blunted. Under regular salt (RS) or high salt (HS) diets or under potassium loading, plasma and urinary sodium and potassium were not significantly changed. However, upon LS, the ScnnlaK0 mice lost significant amounts of sodium in their feces, accompanied by very high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAPl/PrasS (Prss8K0) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Upon RS and HS diets, however, Prss8K0 exhibited a significantly reduced APDamii in the afternoon, but its circadian rhythm was maintained. Upon LS diet, sodium loss through feces was accompanied by higher plasma aldosterone levels. Thus, we have identified the channel-activating protease CAPl/Prss8 as an important in vivo regulator of ENaC in colon. Furthermore, we are investigating the importance of ENaC and CAPI/Prss8 in pathological conditions like inflammatory bowel disease (IBD). Preliminary data showed that PmS-deficiency led to worsening of DSS-induced colitis as compared to their respective controls. Overall, the present study has shown that under salt restriction, the absence of ENaC in colonic surface epithelium was compensated by the activation of renin-angiotensin- aldosterone (RAAS) system in the kidney. This led to a colon specific pseudohypoaldosteroni sm type 1 with mineralocorticoid resistance without evidence of impaired potassium retention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Small nodal tumor infiltrates are identified by applying multilevel sectioning and immunohistochemistry (IHC) in addition to H&E (hematoxylin and eosin) stains of resected lymph nodes. However, the use of multilevel sectioning and IHC is very time-consuming and costly. The current standard analysis of lymph nodes in colon cancer patients is based on one slide per lymph node stained by H&E. A new molecular diagnostic system called ''One tep Nucleic Acid Amplification'' (OSNA) was designed for a more accurate detection of lymph node metastases. The objective of the present investigation was to compare the performance ofOSNAto current standard histology (H&E). We hypothesize that OSNA provides a better staging than the routine use of one slide H&E per lymph node.Methods: From 22 colon cancer patients 307 frozen lymph nodes were used to compare OSNA with H&E. The lymph nodes were cut into halves. One half of the lymph node was analyzed by OSNA. The semi-automated OSNA uses amplification of reverse-transcribed cytokeratin19 (CK19) mRNA directly from the homogenate. The remaining tissue was dedicated to histology, with 5 levels of H&E and IHC staining (CK19).Results: On routine evaluation of oneH&Eslide 7 patients were nodal positive (macro-metastases). All these patients were recognized by OSNA analysis as being positive (sensitivity 100%). Two of the remaining 15 patients had lymph node micro-metastases and 9 isolated tumor cells. For the patients with micrometastases both H&E and OSNA were positive in 1 of the 2 patients. For patients with isolated tumor cells, H&E was positive in 1/9 cases whereas OSNA was positive in 3/9 patients (IHC as a reference). There was only one case to be described as IHC negative/OSNA positive. On the basis of single lymph nodes the sensitivity of OSNA and the 5 levels of H&E and IHC was 94・5%.Conclusion: OSNA is a novel molecular tool for the detection of lymph node metastases in colon cancer patients which provides better staging compared to the current standard evaluation of one slide H&E stain. Since the use of OSNA allows the analysis of the whole lymph node, sampling bias and undetected tumor deposits due to uninvestigated material will be overcome. OSNA improves staging in colon cancer patients and may replace the current standard of H&E staining in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to determine if 5-fluorouracil (5FU) could potentiate the effect of radioimmunotherapy (RIT), nude mice bearing subcutaneous human colon carcinoma xenografts were treated by 1 or 2 intravenous injection(s) of subtherapeutic doses of 131I labeled F(ab')2 from anti-carcinoembryonic antigen monoclonal antibodies combined with 5 daily intraperitoneal injections of 5FU. Control mice received either 131I F(ab')2 alone, 5FU alone or no treatment. RIT alone induced significant tumor regression, while 5FU alone gave only minimal tumor growth inhibition. The combined treatment group also resulted in long-term tumor regression with tumors remaining significantly smaller than in the RIT alone group. There was however, no significant difference in tumor recurrence time between the groups treated with RIT alone or with RIT + 5FU. Myelotoxicity, the major side effect of RIT, detected by the decrease of peripheral white blood cells (WBC), was shown to be almost identical between the groups receiving only RIT or only 5FU. Surprisingly, there was no cumulative bone marrow toxicity in animals which received 5FU before RIT. Furthermore, in the latter group, the WBC levels after RIT were significantly higher than in the control group receiving only RIT. Taken together, the results demonstrate the higher therapeutic efficiency of RIT as compared to 5FU in this model. They do not show, however, that the combination of the two forms of treatment can induce longer tumor remission. Interestingly, the WBC results suggest that 5FU given before RIT can have a radioprotective effect on bone marrow, possibly by selecting radioresistant bone marrow stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invariant NKT cells (iNKT cells) recognize glycolipid Ags via an invariant TCR alpha-chain and play a central role in various immune responses. Although human CD4(+) and CD4(-) iNKT cell subsets both produce Th1 cytokines, the CD4(+) subset displays an enhanced ability to secrete Th2 cytokines and shows regulatory activity. We performed an ex vivo analysis of blood, liver, and tumor iNKT cells from patients with hepatocellular carcinoma and metastases from uveal melanoma or colon carcinoma. Frequencies of Valpha24/Vbeta11 iNKT cells were increased in tumors, especially in patients with hepatocellular carcinoma. The proportions of CD4(+), double negative, and CD8alpha(+) iNKT cell subsets in the blood of patients were similar to those of healthy donors. However, we consistently found that the proportion of CD4(+) iNKT cells increased gradually from blood to liver to tumor. Furthermore, CD4(+) iNKT cell clones generated from healthy donors were functionally distinct from their CD4(-) counterparts, exhibiting higher Th2 cytokine production and lower cytolytic activity. Thus, in the tumor microenvironment the iNKT cell repertoire is modified by the enrichment of CD4(+) iNKT cells, a subset able to generate Th2 cytokines that can inhibit the expansion of tumor Ag-specific CD8(+) T cells. Because CD4(+) iNKT cells appear inefficient in tumor defense and may even favor tumor growth and recurrence, novel iNKT-targeted therapies should restore CD4(-) iNKT cells at the tumor site and specifically induce Th1 cytokine production from all iNKT cell subsets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colorectal cancer frequently disseminates through the portal vein into the liver. In this study, outbred Swiss nude mice were adapted to facilitate the induction of liver metastases by a pre-grafting treatment with 6 Gy total body irradiation and i.v. injection of anti-asialo GM1 antibody. One day later, cultured LS 174T human colon cancer cells were injected into the surgically exposed spleen, which was resected 3 min later. In 48 of 65 mice, a few to several hundred liver metastases were macroscopically observed at dissection 3 to 4 weeks after transplantation. Ten of 10 mice, followed-up for survival, died with multiple large confluent liver metastases. By reducing the radiation dose to 4 or 0 Gy, or omitting the anti-asialo GM1 antibody injection, only 60%, 37% or 50% of mice, respectively, had visible metastases 3 weeks after transplantation. Carcinoembryonic antigen (CEA) measured in tumour extracts was in the mean 25.6 micrograms/g in liver metastases compared with 9.2 micrograms/g in s.c. tumours. Uptake of radiolabelled anti-CEA monoclonal antibody (MAb) in the metastases 12, 24 and 48 hr after injection gave a mean value of 39% of the injected dose per gram of tissue (ID/g). In comparison, MAb uptake in s.c. and intrasplenic tumours or lung metastases gave a mean percentage ID/g of 20, 18 and 15, respectively. Laser-induced fluorescence after injection of indocyanin-MAb conjugate allowed direct visual detection of small liver metastases, including some that were not visible under normal light. Preliminary results showed that mice, pre-treated with 4 Gy irradiation and the anti-asialo GM1 injection, were tolerant to radioimmunotherapy with a total dose of 500 muCi 131I labeled anti-CEA intact MAbs given in 3 injections.