475 resultados para T lymphocyte subpopulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lines of evidences have suggested that T cell activation could be impaired in the tumor environment, a condition referred to as tumor-induced immunosuppression. We have previously shown that tenascin-C, an extracellular matrix protein highly expressed in the tumor stroma, inhibits T lymphocyte activation in vitro, raising the possibility that this molecule might contribute to tumor-induced immunosuppression in vivo. However, the region of the protein mediating this effect has remained elusive. Here we report the identification of the minimal region of tenascin-C that can inhibit T cell activation. Recombinant fragments corresponding to defined regions of the molecule were tested for their ability to inhibit in vitro activation of human peripheral blood T cells induced by anti-CD3 mAbs in combination with fibronectin or IL-2. A recombinant protein encompassing the alternatively spliced fibronectin type III domains of tenascin-C (TnFnIII A-D) vigorously inhibited both early and late lymphocyte activation events including activation-induced TCR/CD8 down-modulation, cytokine production, and DNA synthesis. In agreement with this, full length recombinant tenascin-C containing the alternatively spliced region suppressed T cell activation, whereas tenascin-C lacking this region did not. Using a series of smaller fragments and deletion mutants issued from this region, we have identified the TnFnIII A1A2 domain as the minimal region suppressing T cell activation. Single TnFnIII A1 or A2 domains were no longer inhibitory, while maximal inhibition required the presence of the TnFnIII A3 domain. Altogether, these data demonstrate that the TnFnIII A1A2 domain mediate the ability of tenascin-C to inhibit in vitro T cell activation and provide insights into the immunosuppressive activity of tenascin-C in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The granule/perforin exocytosis model of CTL mediated cytolysis proposes that CTL, upon recognition of the specific targets, release the cytolytic, pore-forming protein perforin into the intercellular space which then mediates the cytotoxic effect. However, direct evidence for the involvement of perforin is still lacking, and indeed, recent results even seem incompatible with the model. To determine directly the role of perforin in CTL cytotoxicity, perforin antisense oligonucleotides were exogenously added during the stimulation of mouse spleen derived T cells and human peripheral blood lymphocytes (PBL), respectively. Perforin protein expression in lymphocytes was reduced by up to 65%, and cytotoxicity of stimulated T cells by as much as 69% (5.7-fold). These results provide the first experimental evidence for a crucial role of perforin in lymphocyte mediated cytotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. Mammals have four Notch receptors that bind five different ligands. The function of Notch signaling during lymphopoiesis and T cell neoplasia, based on gain-of-function and conditional loss-of-function approaches for the Notch1 receptor, indicates Notch1 is essential in T cell lineage commitment. Recent studies have addressed the involvement of other Notch receptors and ligands as well as their downstream targets, demonstrating additional functions of Notch signaling in embryonic hematopoiesis, intrathymic T cell development, B cell development and peripheral T cell function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Τ cell activation via the Τ cell receptor (TCR) through antigen recognition is one of the key steps to initiate the adaptive immune response. The mechanisms controlling TCR-induced signaling pathways are the subject of intense research, since deregulated signaling in lymphocytes can lead to immunodeficiency, autoimmunity or lymphomas. In Τ lymphocytes a complex composed of CARMA1, BCL10 and MALT1 has been identified to receive signals from TCR proximal events and to induce further signals crucial for Τ cell activation. MALT1 is scaffold protein and a cysteine protease and both functions have been shown, among other effects, to be crucial to initiate the activation of the transcription factors of the nuclear factor κΒ (NF-κΒ) family after TCR-stimulation. Several proteolytic targets have been described recently and all of them play roles in modulating NF-κΒ activation or other aspects of Τ cell activation. In this study, we describe a novel target of MALT1, Caspase-10. Two isoforms of Caspase-10 are cleaved by MALTI in Τ and Β cells after antigen receptor stimulation. Caspases are a family of cysteine proteases that are known for their roles in cell death and certain immune functions. Caspase-10 has so far only been reported to be involved in the induction of apoptosis. However it is very closely related to the well-characterized Caspase-8 that has been reported to be involved in Τ cell activation. In the present study, we describe a crucial role for Caspase-10, but not Caspase-8, in Τ cell activation after TCR stimulation. Jurkat Τ cells silenced for Caspase-10 expression exhibit a dramatic reduction in IL-2 production following stimulation. The data obtained revealed that this is due to severely reduced activation of activator protein-1 (AP-1), another transcription factor family with key functions in the process of Τ cell activation. We observed strongly reduced expression levels of the AP-1 family member c-Fos after Τ cell stimulation. This transcription factor is expressed upon TCR stimulation and is a crucial component of AP-1 transcription factor dimers required for Τ cell activation. In further analysis, it was shown that this defect is not based on reduced transcription, as the c-Fos mRNA levels are not altered, but rather seems to be caused by a defect in translation or protein stability in the absence of Caspase-10. Furthermore, we report a potential interaction of the c-Fos protein and Caspsae-10. This role of Caspase-10 in AP-1 activation however is independent of its cleavage by MALT1, leaving the role of Caspase-10 cleavage in activated lymphocytes unclear. Taken together, these results give new insights into the complex matter of lymphocyte activation whose understanding is crucial for the development of new drugs modulating the immune response or inhibiting lymphoma progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphocyte homeostasis is a balance between lymphocyte proliferation and lymphocyte death. Tight control of apoptosis is essential for immune function, because its altered regulation can result in cancer and autoimmunity. Signals from members of the tumour-necrosis-factor receptor (TNF-R) family, such as Fas and TNF-R1, activate the caspase cascade and result in lymphocyte death by apoptosis. Anti-apoptotic proteins, such as FLIP (also known as FLICE/caspase-8 inhibitory protein) have recently been identified. FLIP expression is tightly regulated in T cells and might be involved in the control of both T-cell activation and death. Abnormal expression of FLIP might have a role not only in autoimmune diseases, but also in tumour development and cardiovascular disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytotoxic T cells represent a powerful strategy for antitumor treatment. Depending on the route of injection, an important role for CD4 T cell-mediated help was observed in the induction of this response. For this reason, we investigated whether induction of a CTL response to the HLA-A2-restricted immunodominant peptide melanoma antigen Melan-A was improved by using rVVs expressing the CTL-defined epitope alone or in combination with an SAg. In the latter case, the few infected dendritic cells simultaneously presented an SAg and an antigen, i.e., peptide. Here, we show that the anti-Melan-A response was efficiently induced but not significantly improved by coexpression of the SAg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleotide-binding oligomerization domain-like receptors (NLRs) are intracellular proteins involved in innate-driven inflammatory responses. The function of the family member NLR caspase recruitment domain containing protein 5 (NLRC5) remains a matter of debate, particularly with respect to NF-κB activation, type I IFN, and MHC I expression. To address the role of NLRC5, we generated Nlrc5-deficient mice (Nlrc5(Δ/Δ)). In this article we show that these animals exhibit slightly decreased CD8(+) T cell percentages, a phenotype compatible with deregulated MHC I expression. Of interest, NLRC5 ablation only mildly affected MHC I expression on APCs and, accordingly, Nlrc5(Δ/Δ) macrophages efficiently primed CD8(+) T cells. In contrast, NLRC5 deficiency dramatically impaired basal expression of MHC I in T, NKT, and NK lymphocytes. NLRC5 was sufficient to induce MHC I expression in a human lymphoid cell line, requiring both caspase recruitment and LRR domains. Moreover, endogenous NLRC5 localized to the nucleus and occupied the proximal promoter region of H-2 genes. Consistent with downregulated MHC I expression, the elimination of Nlrc5(Δ/Δ) lymphocytes by cytotoxic T cells was markedly reduced and, in addition, we observed low NLRC5 expression in several murine and human lymphoid-derived tumor cell lines. Hence, loss of NLRC5 expression represents an advantage for evading CD8(+) T cell-mediated elimination by downmodulation of MHC I levels-a mechanism that may be exploited by transformed cells. Our data show that NLRC5 acts as a key transcriptional regulator of MHC I in lymphocytes and support an essential role for NLRs in directing not only innate but also adaptive immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymph node cells derived from A.TH or A.TL mice primed with beef cytochrome c show striking patterns of reactivity when assayed in vitro for antigen-induced T cell proliferation. Whereas cells from A.TH mice respond specifically to beef cytochrome c or peptides composed of amino acids 1-65 and 81-104, cells from A.TL mice respond neither to beef cytochrome c nor to peptide 1-65, but proliferate following exposure to either peptide 81-104 or to a cytochrome c hybrid molecule in which the N-terminal peptide of beef (1-65) was substituted by a similar peptide obtained from rabbit cytochrome c. Thus, T cells from mice phenotypically unresponsive to beef cytochrome may, in fact, contain populations of lymphocytes capable of responding to a unique peptide, the response to which is totally inhibited when the same fragment is presented in the sequence of the intact protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in the immunogenic and antigenic properties of native and denatured forms of cytochrome c were observed depending on the strain of mouse tested. In C57BL/6 and (C57BL/6 X DBA/2)F1 (BDF1) mice, priming with either native or denatured cytochrome c (apocytochrome c) gave rise to T cell blasts responding in a similar fashion to the two forms of the antigen and to different peptides derived from CNBr cleavage of the protein when tested for proliferation in the presence of C57BL/6 or BDF1 accessory cells. A different pattern of proliferation was observed when apocytochrome c-specific DBA/2 or BDF1 T cell blasts were tested with DBA/2 accessory cells. In this case, no response was obtained to heme peptide 1-65. This was not due to an inability of DBA/2 macrophages to process and present heme peptide 1-65, as they were able to present this antigen to native cytochrome c-specific BDF1 T cell blasts. Thus, it seems that different sets of clones are generated upon priming BDF1 mice with denatured cytochrome c which are able to recognize different sets of peptides depending on the nature of the accessory cells. The results obtained are consistent with the hypothesis that degradation and presentation of native and denatured cytochrome c by macrophages is dependent on the three-dimensional conformation of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the presentation of human histocompatability leukocyte antigen-A*0201-associated tumor peptide antigen MAGE-3271-279 by melanoma cells. We show that specific cytotoxic T lymphocyte (CTL)-recognizing cells transfected with a minigene encoding the preprocessed fragment MAGE-3271-279 failed to recognize cells expressing the full length MAGE-3 protein. Digestion of synthetic peptides extended at the NH2 or COOH terminus of MAGE-3271-279 with purified human proteasome revealed that the generation of the COOH terminus of the antigenic peptide was impaired. Surprisingly, addition of lactacystin to purified proteasome, though partially inhibitory, resulted in the generation of the antigenic peptide. Furthermore, treatment of melanoma cells expressing the MAGE-3 protein with lactacystin resulted in efficient lysis by MAGE-3271-279-specific CTL. We therefore postulate that the generation of antigenic peptides by the proteasome in cells can be modulated by the selective inhibition of certain of its enzymaticactivities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) has emerged recently as an alternative approach for the identification of peptides recognized by T lymphocytes. The choice of both the PS-SCL used for screening experiments and the method used for data analysis are crucial for implementing this approach. With this aim, we tested the recognition of different PS-SCL by a tyrosinase 368-376-specific CTL clone and analyzed the data obtained with a recently developed biometric data analysis based on a model of independent and additive contribution of individual amino acids to peptide antigen recognition. Mixtures defined with amino acids present at the corresponding positions in the native sequence were among the most active for all of the libraries. Somewhat surprisingly, a higher number of native amino acids were identifiable by using amidated COOH-terminal rather than free COOH-terminal PS-SCL. Also, our data clearly indicate that when using PS-SCL longer than optimal, frame shifts occur frequently and should be taken into account. Biometric analysis of the data obtained with the amidated COOH-terminal nonapeptide library allowed the identification of the native ligand as the sequence with the highest score in a public human protein database. However, the adequacy of the PS-SCL data for the identification for the peptide ligand varied depending on the PS-SCL used. Altogether these results provide insight into the potential of PS-SCL for the identification of CTL-defined tumor-derived antigenic sequences and may significantly implement our ability to interpret the results of these analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thymic negative selection renders the developing T-cell repertoire tolerant to self-major histocompatability complex (MHC)/peptide ligands. The major mechanism of induction of self-tolerance is thought to be thymic clonal deletion, ie, the induction of apoptotic cell death in thymocytes expressing a self-reactive T-cell receptor. Consistent with this hypothesis, in mice deficient in thymic clonal deletion mediated by cells of hematopoietic origin, a twofold to threefold increased generation of mature thymocytes has been observed. Here we describe the analysis of the specificity of T lymphocytes developing in the absence of clonal deletion mediated by hematopoietic cells. In vitro, targets expressing syngeneic MHC were readily lysed by activated CD8(+) T cells from deletion-deficient mice. However, proliferative responses of T cells from these mice on activation with syngeneic antigen presenting cells were rather poor. In vivo, deletion-deficient T cells were incapable of induction of lethal graft-versus-host disease in syngeneic hosts. These data indicate that in the absence of thymic deletion mediated by hematopoietic cells functional T-cell tolerance can be induced by nonhematopoietic cells in the thymus. Moreover, our results emphasize the redundancy in thymic negative selection mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Murine T cell reactivity with products of the minor lymphocyte stimulatory (Mls) locus correlates with the expression of particular variable (V) domains of the T cell receptor (TCR) beta chain. It was recently demonstrated that Mls antigens are encoded by an open reading frame (ORF) in the 3' long terminal repeat of either endogenous or exogenous mouse mammary tumor virus (MMTV). Immature thymocytes expressing reactive TCR-V beta domains are clonally deleted upon exposure to endogenous Mtv's. Mature T cells proliferate vigorously in response to Mls-1a (Mtv-7) in vivo, but induction of specific anergy and deletion after exposure to Mtv-7-expressing cells in the periphery has also been described. We show here that B cells and CD8+ (but not CD4+) T cells from Mtv-7+ mice efficiently induce peripheral deletion of reactive T cells upon transfer to Mtv-7- recipients, whereas only B cells stimulate specific T cell proliferation in vivo. In contrast to endogenous Mtv-7, transfer of B, CD4+, or CD8+ lymphocyte subsets from mice maternally infected with MMTV(SW), an infectious homologue of Mtv-7, results in specific T cell deletion in the absence of a detectable proliferative response. Finally, we show by secondary transfers of infected cells that exogenous MMTV(SW) is transmitted multidirectionally between lymphocyte subsets and ultimately to the mammary gland. Collectively our data demonstrate heterogeneity in the expression and/or presentation of endogenous and exogenous MMTV ORF by lymphocyte subsets and emphasize the low threshold required for induction of peripheral T cell deletion by these gene products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirty-five HLA-A2(+) patients with completely resected stage I-III melanoma were vaccinated multiple times over 6 months with a modified melanoma peptide, gp100(209-2M), emulsified in Montanide adjuvant. Direct ex vivo gp100(209-2M) tetramer analysis of pre- and postvaccine peripheral blood mononuclear cells (PBMCs) demonstrated significant increases in the frequency of tetramer(+) CD8(+) T cells after immunization for 33 of 35 evaluable patients (median, 0.36%; range, 0.05-8.9%). Ex vivo IFN-gamma cytokine flow cytometry analysis of postvaccine PBMCs after brief gp100(209-2M) in vitro activation showed that for all of the patients studied tetramer(+) CD8(+) T cells produced IFN-gamma; however, some patients had significant numbers of tetramer(+) IFN-gamma(-) CD8(+)T cells suggesting functional anergy. Additionally, 8 day gp100(209-2M) in vitro stimulation (IVS) of pre- and postvaccine PBMCs resulted in significant expansion of tetramer(+) CD8(+) T cells from postvaccine cells for 34 patients, and these IVS tetramer(+) CD8(+) T cells were functionally responsive by IFN-gamma cytokine flow cytometry analysis after restimulation with either native or modified gp100 peptide. However, correlated functional and phenotype analysis of IVS-expanded postvaccine CD8(+) T cells demonstrated the proliferation of functionally anergic gp100(209-2M)- tetramer(+) CD8(+) T cells in several patients and also indicated interpatient variability of gp100(209-2M) stimulated T-cell proliferation. Flow cytometry analysis of cryopreserved postvaccine PBMCs from representative patients showed that the majority of tetramer(+) CD8+ T cells (78.1 +/- 4.2%) had either an "effector" (CD45 RA(+)/CCR7(-)) or an "effector-memory" phenotype (CD45RA(-)/CCR7(-)). Notably, analysis of PBMCs collected 12-24 months after vaccine therapy demonstrated the durable presence of gp100(209-2M)-specific memory CD8(+) T cells with high proliferation potential. Overall, this report demonstrates that after vaccination with a MHC class I-restricted melanoma peptide, resected nonmetastatic melanoma patients can mount a significant antigen-specific CD8(+) T-cell immune response with a functionally intact memory component. The data further support the combined use of tetramer binding and functional assays in correlated ex vivo and IVS settings as a standard for immunomonitoring of cancer vaccine patients.