143 resultados para T helper 1 immune response
Resumo:
Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila.
Resumo:
This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups.
Resumo:
Anti-idiotype antibodies can mimic the conformational epitopes of the original antigen and act as antigen substitutes for vaccination and/or serological purposes. To investigate this possibility concerning the tumor marker carcinoembryonic antigen (CEA), BALB/c mice were immunized with the previously described anti-CEA monoclonal antibody (MAb) 5.D11 (AB1). After cell fusion, 15 stable cloned cell lines secreting anti-Ids (AB2) were obtained. Selected MAbs gave various degrees of inhibition (up to 100%) of the binding of 125I-labeled CEA to MAb 5.D11. Absence of reactivity of anti-Id MAbs with normal mouse IgG was first demonstrated by the fact that anti-Id MAbs were not absorbed by passage through a mouse IgG column, and second because they bound specifically to non-reduced MAb 5.D11 on Western blots. Anti-5.D11 MAbs did not inhibit binding to CEA of MAb 10.B9, another anti-CEA antibody obtained in the same fusion as 5.D11, or that of several anti-CEA MAbs reported in an international workshop, with the exception of two other anti-CEA MAbs, both directed against the GOLD IV epitope. When applied to an Id-anti-Id competitive radioimmunoassay, a sensitivity of 2 ng/ml of CEA was obtained, which is sufficient for monitoring circulating CEA in carcinoma patients. To verify that the anti-Id MAbs have the potential to be used as CEA vaccines, syngeneic BALB/c mice were immunized with these MAbs (AB2). Sera from immunized mice were demonstrated to contain AB3 antibodies recognizing the original antigen, CEA, both in enzyme immunoassay and by immunoperoxidase staining of human colon carcinoma. These results open the perspective of vaccination against colorectal carcinoma through the use of anti-idiotype antibodies as antigen substitutes.
Resumo:
Background Airborne microbial products have been reported to promote immune responses that suppress asthma, yet how these beneficial effects take place remains controversial and poorly understood. Methods We exposed mice to the bacterium Escherichia coli and subsequently induced allergic airway inflammation through sensitization and intranasal challenge with ovalbumin. Results Pulmonary exposure to the bacterium Escherichia coli leads to a suppression of allergic airway inflammation. This immune modulation was neither mediated by the induction of a T helper 1 (Th1) response nor regulatory T cells; however, it was dependent on Toll-like receptor 4 (TLR4) but did not involve TLR desensitisation. Dendritic cell migration to the draining lymph nodes and activation of T cells was unaffected by prior exposure to E.coli, while dendritic cells in the lung displayed a less activated phenotype and had impaired antigen presentation capacity. Consequently, in situ Th2 cytokine production was abrogated. The suppression of airway hyper-responsiveness was mediated through the recruitment of gd T cells; however, the suppression of dendritic cells and T cells was mediated through a distinct mechanism that could not be overcome by the local administration of activated dendritic cells, or by the in vivo administration of tumour necrosis factor a. Conclusion Our data reveal a localized immunoregulatory pathway that acts to protect the airways from allergic inflammation.
Resumo:
Summary : Antigen-specific T lymphocytes constantly patrol the body to search for invading pathogens. Given the large external and internal body surfaces that need to be surveyed, a sophisticated strategy is necessary to facilitate encounters between T cells and pathogens. Dendritic cells present at all body surfaces are specialized in capturing pathogens and bringing them to T zones of secondary lymphoid organs, such as the lymph nodes and the spleen. Here, dendritic cells present antigenic fragments and activate the rare antigen-specific T lymphocytes. This induction of an immune response is facilitated in multiple ways by a dense network of poorly characterized stromal cells, termed fibroblastic reticular cells (FRCs). They constitutively produce the chemokines CCL21 and CCL19, which attract naïve T cells and dendritic cells into the T zone. Further, they provide an adhesion scaffold for dendritic cells and a migration scaffold for naïve T cells, allowing efficient screening of dendritic cell by thousands of T cells. FRCs also form a system of microchannels (conduits) that allows rapid transport of antigen or cytokines from the subcapsular sinus to the T zone. We characterized lymph node FRCS by flow cytometry, immunofluorescence microscopy, real time PCR and functional assays and could show that FRCs are a unique type of myofibroblasts which produce the T cell survival factor IL-7. This function was shown to be critically involved in regulating the size of the peripheral T cell pool and further demonstrates the importance of FRCs in maintaining immunocompetence. As we observed that some dendritic cells also express the receptor for IL-7, we expected a similar function of IL-7 in their survival. Surprisingly, we found no role for IL-7 in their survival but in their development. Analysis of hematopoietic precursors suggested that part of the dendritic cell pool develops out of an IL-7 dependent precursor, which maybe shared with lymphocytes. During the induction of an immune response, lymph node homeostasis is drastically altered when the lymph node expands several-fold in size to accommodate many more lymphocytes. Here, we describe that this expansion of the T zone is accompanied by the activation and proliferation of FRCs thereby preserving T zone architecture and function. This expansion of the FRC network is regulated by antigen-independent and -dependent events. It demonstrates the incredible plasticity of this organ allowing clonal expansion of antigen-specific lymphocytes. Résumé : Les lymphocytes T, spécifiques pour un antigène particulier, patrouillent constamment le corps à la recherche de l'invasion de pathogène. A cause des grandes surfaces externes et internes du corps, une stratégie sophistiquée est nécessaire afin de faciliter les rencontres entre les cellules T et les agents pathogènes. Les cellules dendritiques présentes dans toutes les surfaces du corps sont spécialisées dans la capture des agents pathogènes et dans le transport vers les zones T des organes lymphoïdes secondaires, comme les ganglions lymphatiques et la rate. Dans ces organes, les cellules dendritiques présentent les fragments antigéniques et activent les lymphocytes T rares. L'induction de cette réponse immunitaire est facilitée de différentes manières par un réseau dense de cellules strornales mal caractérisé, appelées 'fibroblastic reticular tells' (FRCs). FRCs produisent constitutivement les chimiokines CCL21 et CCL19, qui attirent les lymphocytes T naïfs et les cellules dendritiques vers la zone T. En outre, elles donnent une base d'adhérence pour les cellules dendritiques et elles attirent les cellules T naïves vers les cellules dendritiques. Les FRCs forment des petits canaux (ou conduits) qui permettent le transport rapide d'antigènes solubles ou de cytokines vers la zone T. Nous avons caractérisé les FRCs par cytométrie en flux, immunofluorescence et par PCR en temps réel et nous avons démontré que les FRCs sont un type unique de rnyofibroblastes qui produisent un facteur de survie des cellules T, l'Interleukine-7. Il a été démontré que cette fonction est cruciale afin d'augmenter la taille et la diversité du répertoire de cellules T, et ainsi, maintenir l'immunocompétence. Comme nous avons observé que certaines cellules dendritiques expriment également le récepteur de l'IL-7, nous avons testé une fonction similaire dans leur survie. Étonnamment, nous n'avons pas trouvé de rôle pour l'IL-7 dans leur survie, mais dans leur développement. L'analyse des précurseurs hématopoïétiques a suggéré qu'une fraction des cellules dendritiques se développe à partir des précurseurs dépendants de l'IL-7, qui sont probablement partagés avec les lymphocytes. Au cours de l'induction d'une réponse immunitaire, l'homéostasie du ganglion lymphatique est considérablement modifiée. En effet, sa taille augmente considérablement afin d'accueillir un plus grand nombre de lymphocytes. Nous décrivons ici que cet élargissement de la zone T est accompagné par l'activation et 1a prolifération des FRCs, préservant l'architecture et la fonction de la zone T. Cette expansion du réseau des FRCs est régie par des évènements à la fois dépendants et indépendants de l'antigène. Cela montre l'incroyable plasticité de cet organe qui permet l'expansion clonale des lymphocytes T spécifiques.
Resumo:
Summary Resolution of the inflammation is as important as its induction. In this thesis, we investigated the contributions of two prominent factors involved in inflammation, Tumour Necrosis Factor (TNF) and neutrophils. We studied their role in the resolution óf the inflammatory lesion induced by the infection with the protozoan parasite Leishmania major. In mice susceptible to infection with L. major, unhealing lesions are characterized by an elevated number and sustained presence of inflammatory neutrophils in the infected tissue, illustrating an acute inflammatory process. In contrast, mice from resistant strains, which resolve their lesions, can control the presence of neutrophils at the site of infection. Neutrophil persistence in the infected tissue may result from several events including an increased survival of neutrophils mediated by factors produced by the pathogen or the microenvironment. Following infection with L. major, the cellular composition of the inflammatory lesion differs significantly between susceptible and resistant mice and a higher proportion of macrophages is present in the lesions of resistant strains. In an attempt to clarify the factors involved in neutrophil persistence, we investigated the mechanisms modulating neutrophil cell death. We demonstrated that macrophages could induce neutrophil apoptosis in a process involving TNF. TNF is an essential cytokine with pro- and anti-inflammatory properties, which is expressed as a transmembrane protein that can be cleaved releasing the secreted form. Our data show the essential role of the transmembrane form of TNF (mTNF) in the induction of neutrophil apoptosis by macrophages, revealing macrophages and mTNF as important regulators of neutrophil apoptosis. TNF is critical in the resolution of the inflammatory lesion induced by L. major infection, and in L. major resistant strains its absence results in increased swelling of the lesions. We investigated the contribution of mTNF in the outcome of L. major infection. Our data demonstrate that following infection with L. major, mTNF is sufficient to support the resolution of the inflammatory lesion and optimal parasite killing. In addition, we show that the presence of mTNF is essential to induce neutrophil clearance in the infected tissue. While the persistence of neutrophils is deleterious for the host, we could demonstrate an early anti-inflammatory role of neutrophils. Altogether, this study demonstrates the importance of mTNF in the induction of neutrophil apoptosis, a process involved in the resolution of the inflammatory lesion induced by L. major infection. Résumé La résolution de l'inflammation est toute aussi importante que son initiation. Durant ce travail de thèse, nous avons étudié les contributions de deux facteurs importants impliqués dans l'inflammation, le TNF (Facteur Nécrosant des Tumeurs) et les neutrophiles, dans la résolution de la lésion inflammatoire induite par l'infection avec le parasite protozoaire Leishmania major. Chez les souris sensibles à l'infection avec L. major, des lésions importantes qui ne guérissent pas se développent ; celles-ci sont caractérisées par un nombre élevé et une présence soutenue de neutrophiles dans les tissus infectés, ce qui illustre un processus inflammatoire aigu. Au contraire, les souris résistantes à l'infection qui guérissent leurs lésions, sont capables de contrôler la présence des neutrophiles au site d'infection. La persistance des neutrophiles dans la lésion inflammatoire peut être la conséquence de plusieurs événements, dont une augmentation de la survie des neutrophiles induite par des facteurs produits par le pathogène ou le micro-environnement. Suite à l'infection avec L. major, la composition cellulaire de la lésion inflammatoire est significativement différente entre les souris sensibles et résistantes à l'infection, et une plus grande proportion de macrophages est présente dans les lésions des souris résistantes. Dans l'objectif de clarifier les facteurs impliqués dans la persistance des neutrophiles dans les tissus infectés par L. major, nous avons étudié les mécanismes de régulation de la mort des neutrophiles. Nous avons démontré que les macrophages pouvaient induire l'apoptose des neutrophiles dans un procédé impliquant le TNF. Le TNF est une cytokine aux propriétés pro- et anti-inflammatoires, exprimée sous une forme transmembranaire qui peut être clivée pour relâcher la forme sécrétée. Nos expériences illustrent le rôle essentiel de la forme transmembranaire du TNF (mTNF) dans l'induction de l'apoptose des neutrophiles par les macrophages. Lé TNF est une cytokine importante dans la résolution de la réaction inflammatoire induite par L. major, et chez les souris résistantes l'absence de TNF provoque des lésions inflammatoires plus importantes. Nous avons étudié la contribution du mTNF dans la résolution de l'infection avec L. major. Nos résultats démontrent que suite à une infection avec le parasite, la présence du mTNF est suffisante pour guérir la lésion inflammatoire et contrôler efficacement la réplication du parasite. De plus, le mTNF joue un rôle essentiel dans l'élimination des neutrophiles du tissu infecté. Alors que la persistance des neutrophiles est nocive pour l'hôte, nous avons montré que les neutrophiles avaient un rôle précoce anti-inflammatoire. En résumé, cette étude révèle l'importance du mTNF dans l'induction de l'apoptose des neutrophiles par les macrophages, un procédé impliqué dans la résolution de la lésion inflammatoire induite par l'infection avec L. major.
Resumo:
We have previously described a unique system for identifying Ag-selected CD8 T cells during an in vivo response in normal mice. In this system, lymphocytes isolated from DBA/2 mice injected i.p. with HLA-CW3 transfected syngeneic (H-2d) P815 cells show a remarkable expansion of CD8 cells that utilize TCR expressing the V beta 10 gene segment and additional structural features characteristic of Kd-restricted CW3-specific CTL clones. We have now taken advantage of this system to characterize the surface phenotype of CD8 cells selected by Ag in vivo. We observed several distinct phenotypes at different stages of the response. At the peak of the response, Ag-selected cells were low in CD62L and CD45RB expression but displayed high levels of CD44. In addition, there was a partial down-regulation of CD8 and TCR. Cells of this phenotype were present in lymphoid tissues for several mo after immunization. Much later in the response, Ag-selected cells expressed higher levels of CD8 and TCR. Moreover, a distinct subset of these long-term immune cells emerged that now expressed CD62L and CD45RB. Analysis of CD8 cells from different tissues also revealed certain differences, particularly in TCR and co-receptor levels from liver-derived cells compared with circulating cells at the peak of the response. Our findings suggest that the function of Ag-selected CD8 cells may be regulated over time and according to location by subtle changes in cell-surface phenotype.
Resumo:
Suite à une infection avec le protozoaire Leishmania major (L. major), les souris sensibles de souche BALB/c développent des lésions progressives associées à une maturation des cellules CD4+ TH2 sécrétant de l'IL-4. A l'inverse, les souris résistantes de souche C57BL/6 guérissent à terme, sous l'influence de l'expansion des cellules CD4+ TH1 produisant de l'IFNy qui a un effet synergique avec le TNF ("tumor necrosis factor") sur l'activation des macrophages et leur fonction leishmanicide. Lors de notre étude nous avons montré que des souris C57BL/6 doublement déficientes en TNF et FasL ("Fas ligand") infectées par L. major ne guérissaient ni leur lésions ni ne contrôlaient la réplication de parasites malgré une réponse de type TH1. Bien que l'activité de synthétase inductible de l'oxyde nitrique ("iNOs") soit comparable chez les souris doublement ou simplement déficientes, seules celles déficientes en FasL ont démontré une incapacité à contrôler la réplication parasitaire. De surcroît il est apparu que le FasL a un effet synergique avec l'IFNy. L'adjonction de FasL à une culture cellulaire de macrophages stimulés par l'IFNy conduit à une activation de ces cellules. Celle-ci est démontrée par l'augmentation de la production de TNF et de NO par les macrophages ainsi que par l'élimination des parasites intracellulaires par ces mêmes cellules. Alors que le FasL et l'IFNy semblent essentiels au contrôle de la réplication des pathogènes intracellulaires, la contribution de TNF s'oriente davantage vers le contrôle de l'inflammation. L'activation macrophagique via Fas précède la mort cellulaire qui survient quelques jours plus tard. Cette mort cellulaire programmée était indépendante de la cascade enzymatique des caspases, au vu de l'absence d'effet de l'inhibiteur non-spécifique ZVAD-fmk des caspases. Ces résultats suggèrent que l'interaction Fas-FasL agit comme une costimulation nécessaire à une activation efficace des macrophages, la mort cellulaire survenant consécutivement à l'activation des macrophages.¦-¦Upon infection with the protozoan parasite Leishmania major (L. major), susceptible BALB/c mice develop non healing lesions associated with the maturation of CD4+ TH2 cells secreting IL-4. In contrast, resistant C57BL/6 mice are able to heal their lesions, because of CD4+ TH1 cell expansion and production of high levels of IFNy, which synergizes with tumour necrosis factor (TNF) in activating macrophages to their microbicidal state. In our study we showed that C57BL/6 mice lacking both TNF and Fas ligand (FasL) infected with L. major neither resolved their lesions nor controlled L. major replication despite a strong TH1 response. Although comparable inducible nitric oxide synthase (iNOs) was measured in single or double deficient mice, only mice deficient in FasL failed to control the parasite replication. Moreover FasL synergized with IFNy for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Addition of FasL to IFNy stimulated macrophages led to their activation, as reflected by the secretion of tumour necrosis factor and nitrite oxide, as well as the induction of their microbicidal activity, resulting in the killing of intracellular L. major. While FasL along with IFNy and iNOs appeared to be essential for the complete control of intracellular pathogen replication, the contribution of TNF appeared more important in controlling the inflammation on the site of infection. Macrophage activation via Fas pathway preceded cell death, which occurred a few days after Fas mediated activation. This program cell death was independent of caspase enzymatic activities as revealed by the lack of effect of ZVAD-fmk, a pan-caspase inhibitor. These results suggested that the Fas-FasL pathway, as part of the classical activation pathway of the macrophages, is essential in the stimulation of macrophage leading to a microbicidal state and to AICD, and may thus contribute to the pathogenesis of L. major infection.
Resumo:
Newborns are particularly susceptible to bacterial infections due to qualitative and quantitative deficiencies of the neonatal innate immune system. However, the mechanisms underlying these deficiencies are poorly understood. Given that fetuses are exposed to high concentrations of estradiol and progesterone during gestation and at time of delivery, we analyzed the effects of these hormones on the response of neonatal innate immune cells to endotoxin, bacterial lipopeptide, and Escherichia coli and group B Streptococcus, the two most common causes of early-onset neonatal sepsis. Here we show that at concentrations present in umbilical cord blood, estradiol and progesterone are as powerful as hydrocortisone for inhibition of cytokine production by cord blood mononuclear cells (CBMCs) and newborn monocytes. Interestingly, CBMCs and newborn monocytes are more sensitive to the effects of estradiol and progesterone than adult peripheral blood mononuclear cells and monocytes. This increased sensitivity is associated with higher expression levels of estrogen and membrane progesterone receptors but is independent of a downregulation of Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response gene 88 in newborn cells. Estradiol and progesterone mediate their anti-inflammatory activity through inhibition of the NF-κB pathway but not the mitogen-activated protein kinase pathway in CBMCs. Altogether, these results suggest that elevated umbilical cord blood concentrations of estradiol and progesterone acting on mononuclear cells expressing high levels of steroid receptors contribute to impair innate immune responses in newborns. Therefore, intrauterine exposure to estradiol and progesterone may participate in increasing susceptibility to infection during the neonatal period.
Resumo:
Neutrophils are key components of the inflammatory response and as such contribute to the killing of microorganisms. In addition, recent evidence suggests their involvement in the development of the immune response. The role of neutrophils during the first weeks post-infection with Leishmania donovani was investigated in this study. When L. donovani-infected mice were selectively depleted of neutrophils with the NIMP-R14 monoclonal antibody, a significant increase in parasite numbers was observed in the spleen and bone marrow and to a lesser extent in the liver. Increased susceptibility was associated with enhanced splenomegally, a delay in the maturation of hepatic granulomas, and a decrease in inducible nitric oxide synthase expression within granulomas. In the spleen, neutrophil depletion was associated with a significant increase in interleukin 4 (IL-4) and IL-10 levels and reduced gamma interferon secretion by CD4(+) and CD8(+) T cells. Increased production of serum IL-4 and IL-10 and higher levels of Leishmania-specific immunoglobulin G1 (IgG1) versus IgG2a revealed the preferential induction of Th2 responses in neutrophil-depleted mice. Altogether, these data suggest a critical role for neutrophils in the early protective response against L. donovani, both as effector cells involved in the killing of the parasites and as significant players influencing the development of a protective Th1 immune response.
Resumo:
The classical T cell cytokine macrophage migration inhibitory factor (MIF) has reemerged recently as a critical mediator of the host immune and stress response. MIF has been found to be a mediator of several diseases including gram-negative septic shock and delayed-type hypersensitivity reactions. Its immunological functions include the modulation of the host macrophage and T and B cell response. In contrast to other known cytokines, MIF production is induced rather than suppressed by glucocorticoids, and MIF has been found to override the immunosuppressive effects of glucocorticoids. Recently, elucidation of the three-dimensional structure of MIF revealed that MIF has a novel, unique cytokine structure. Here the biological role of MIF is reviewed in view of its distinct immunological and structural properties.
Resumo:
Although evidence is accumulating that mothers can transfer antibodies to their offspring, little is known about the consequences of such a transfer to the offspring immune system. Because maternal antibodies are effective only during a short period of time after their transfer to offspring, one hypothesis is that maternal antibodies provides a transitory antigen-specific protection to offspring, thus lessening the need for offspring to mount their own humoral immune response towards these specific antigens. In birds, this scenario predicts that offspring immune response towards a specific antigen is inhibited to a larger extent in hatchlings than in older nestlings. We tested this hypothesis in tawny owls Strix aluco by cross-fostering clutches between nests and then challenging siblings with a vaccine either two times (at 4- and 11-d-old) or only one time at 11-d-old to compare the strength of the humoral response between nestlings born from mothers with naturally high and low levels of antibodies against this vaccine. Because maternal antibodies are expected to be effective only during a short period of time after hatching, we predict that maternal antibodies should inhibit the immune response of nestlings vaccinated from the fourth day after hatching more than in nestlings vaccinated only at a later age. As expected, the inhibitory effect of maternal antibodies was stronger in nestlings vaccinated soon after hatching than in siblings injected at a later age. Therefore, in wild avian populations pre-hatching maternal effects may confer offspring with a transitory immune protection in the first days following hatching.
Resumo:
Superantigens of mouse mammary tumor virus induce a strong cognate interaction between T cells and B cells. In addition to amplifying the virus-infected B-cell pool, this superantigen-driven interaction leads to the differentiation of virus-specific B cells into plasma cells. Successful interaction between T cells and B cells is required for completion of the viral life cycle.
Resumo:
Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-kappaB-dependent genes, type I IFNs, and caspase-dependent IL-1beta maturation. Immune serum amplified TLR9-independent type I IFN expression and enhanced NLRP3-dependent IL-1beta maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated increased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.
Resumo:
Pathogenicity of Chlamydia and Chlamydia-related bacteria could be partially mediated by an enhanced activation of the innate immune response. The study of this host pathogen interaction has proved challenging due to the restricted in vitro growth of these strict intracellular bacteria and the lack of genetic tools to manipulate their genomes. Despite these difficulties, the interactions of Chlamydiales with the innate immune cells and their effectors have been studied thoroughly. This review aims to point out the role of pattern recognition receptors and signal molecules (cytokines, reactive oxygen species) of the innate immune response in the pathogenesis of chlamydial infection. Besides inducing clearance of the bacteria, some of these effectors may be used by the Chlamydia to establish chronic infections or to spread. Thus, the induced innate immune response seems to be variable depending on the species and/or the serovar, making the pattern more complex. It remains crucial to determine the common players of the innate immune response in order to help define new treatment strategies and to develop effective vaccines. The excellent growth in phagocytic cells of some Chlamydia-related organisms such as Waddlia chondrophila supports their use as model organisms to study conserved features important for interactions between the innate immunity and Chlamydia.