42 resultados para Synthetic and natural cannabinoids
Resumo:
In Neo-Darwinism, variation and natural selection are the two evolutionary mechanisms which propel biological evolution. Our previous article presented a histogram model [1] consisting in populations of individuals whose number changed under the influence of variation and/or fitness, the total population remaining constant. Individuals are classified into bins, and the content of each bin is calculated generation after generation by an Excel spreadsheet. Here, we apply the histogram model to a stable population with fitness F(1)=1.00 in which one or two fitter mutants emerge. In a first scenario, a single mutant emerged in the population whose fitness was greater than 1.00. The simulations ended when the original population was reduced to a single individual. The histogram model was validated by excellent agreement between its predictions and those of a classical continuous function (Eqn. 1) which predicts the number of generations needed for a favorable mutation to spread throughout a population. But in contrast to Eqn. 1, our histogram model is adaptable to more complex scenarios, as demonstrated here. In the second and third scenarios, the original population was present at time zero together with two mutants which differed from the original population by two higher and distinct fitness values. In the fourth scenario, the large original population was present at time zero together with one fitter mutant. After a number of generations, when the mutant offspring had multiplied, a second mutant was introduced whose fitness was even greater. The histogram model also allows Shannon entropy (SE) to be monitored continuously as the information content of the total population decreases or increases. The results of these simulations illustrate, in a graphically didactic manner, the influence of natural selection, operating through relative fitness, in the emergence and dominance of a fitter mutant.
Resumo:
Rockfall is an extremely rapid process involving long travel distances. Due to these features, when an event occurs, the ability to take evasive action is practically zero and, thus, the risk of injury or loss of life is high. Damage to buildings and infrastructure is quite likely. In many cases, therefore, suitable protection measures are necessary. This contribution provides an overview of previous and current research on the main topics related to rockfall. It covers the onset of rockfall and runout modelling approaches, as well as hazard zoning and protection measures. It is the aim of this article to provide an in-depth knowledge base for researchers and practitioners involved in projects dealing with the rockfall protection of infrastructures, who may work in the fields of civil or environmental engineering, risk and safety, the earth and natural sciences.
Resumo:
Peripheral T-cell lymphomas (PTCLs) represent a heterogeneous group of more than 20 neoplastic entities derived from mature T cells and natural killer (NK) cells involved in innate and adaptive immunity. With few exceptions these malignancies, which may present as disseminated, predominantly extranodal or cutaneous, or predominantly nodal diseases, are clinically aggressive and have a dismal prognosis. Their diagnosis and classification is hampered by several difficulties, including a significant morphological and immunophenotypic overlap across different entities, and the lack of characteristic genetic alterations for most of them. Although there is increasing evidence that the cell of origin is a major determinant for the delineation of several PTCL entities, however, the cellular derivation of most entities remains poorly characterized and/or may be heterogeneous. The complexity of the biology and pathophysiology of PTCLs has been only partly deciphered. In recent years, novel insights have been gained from genome-wide profiling analyses. In this review, we will summarize the current knowledge on the pathobiological features of peripheral NK/T-cell neoplasms, with a focus on selected disease entities manifesting as tissue infiltrates primarily in extranodal sites and lymph nodes.
Resumo:
A number of geophysical methods, such as ground-penetrating radar (GPR), have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, the stochastic inversion of such data within a coupled geophysical-hydrological framework may allow for the effective estimation of vadose zone hydraulic parameters and their corresponding uncertainties. A critical issue in stochastic inversion is choosing prior parameter probability distributions from which potential model configurations are drawn and tested against observed data. A well chosen prior should reflect as honestly as possible the initial state of knowledge regarding the parameters and be neither overly specific nor too conservative. In a Bayesian context, combining the prior with available data yields a posterior state of knowledge about the parameters, which can then be used statistically for predictions and risk assessment. Here we investigate the influence of prior information regarding the van Genuchten-Mualem (VGM) parameters, which describe vadose zone hydraulic properties, on the stochastic inversion of crosshole GPR data collected under steady state, natural-loading conditions. We do this using a Bayesian Markov chain Monte Carlo (MCMC) inversion approach, considering first noninformative uniform prior distributions and then more informative priors derived from soil property databases. For the informative priors, we further explore the effect of including information regarding parameter correlation. Analysis of both synthetic and field data indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when we combine these data with a realistic, informative prior.
Resumo:
The cytotoxic T-cell and natural killer (NK)-cell lymphomas and related disorders are important but relatively rare lymphoid neoplasms that frequently are a challenge for practicing pathologists. This selective review, based on a meeting of the International Lymphoma Study Group, briefly reviews T-cell and NK-cell development and addresses questions related to the importance of precise cell lineage (αβ-type T cell, γδ T cell, or NK cell), the implications of Epstein-Barr virus infection, the significance of anatomic location including nodal disease, and the question of further categorization of enteropathy-associated T-cell lymphomas. Finally, developments subsequent to the 2008 World Health Organization Classification, including the recognition of indolent NK-cell and T-cell disorders of the gastrointestinal tract are presented.
Resumo:
The peroxisome proliferator-activated receptors (PPARs) are fatty acid and eicosanoid inducible nuclear receptors, which occur in three different isotypes. Upon activator binding, they modulate the expression of various target genes implicated in several important physiological pathways. During the past few years, the identification of both PPAR ligands, natural and synthetic, and PPAR targets and their associated functions has been one of the most important achievements in the field. It underscores the potential therapeutic application of PPAR-specific compounds on the one side, and the crucial biological roles of endogenous PPAR ligands on the other.
Resumo:
Lake Neuchatel is a medium sized, hard-water lake, lacking varved sediments, situated in the western Swiss Lowlands at the foot of the Jura Mountains. Stable isotope data (delta(18)O and delta(13)C) from both bulk carbonate and ostracode calcite in an 81 cm long, radiocarbon-dated sediment core represent the last 1500 years of Lake Neuchatel's environmental history. Comparison between this isotopic and other palaeolimnologic data (mineralogical, geochemical, palynological, etc.) helps to differentiate between anthropogenic and natural factors most recently affecting the lake. An increase in lacustrine productivity (450-650AD ca), inferred from the positive trend in delta(13)C values of bulk carbonate, is related to medieval forest clearances and the associated nutrient budget changes. A negative trend in both the bulk carbonate and ostracode calcite delta(18)O values between approximately 1300 and 1500AD, is tentatively interpreted as due to a cooling in mean air temperature at the transition from the Medieval Warm Period to the Little Ice Age. Negative trends in bulk carbonate delta(18)O and delta(13)C values through the uppermost sediments, which have no equivalent in ostracode calcite isotopic values, are concomitant with the recent onset of eutrophication in the lake. Isotopic disequilibrium during calcite precipitation, probably due to kinetic factors in periods of high productivity is postulated as the mechanism to explain the associated negative isotopic trends, although the effect of a shift of the calcite precipitation towards the warmer months cannot be excluded.
Resumo:
Despite the well-established antitumor activity of CD1d-restricted invariant natural killer T lymphocytes (iNKT), their use for cancer therapy has remained challenging. This appears to be due to their strong but short-lived activation followed by long-term anergy after a single administration of the CD1d agonist ligand alpha-galactosylceramide (αGC). As a promising alternative, we obtained sustained mouse iNKT cell responses associated with prolonged antitumor effects through repeated administrations of tumor-targeted recombinant sCD1d-antitumor scFv fusion proteins loaded with αGC. Here, we demonstrate that CD1d fusion proteins bound to tumor cells via the antibody fragment specific for a tumor-associated antigen, efficiently activate human iNKT cell lines leading to potent tumor cell lysis. The importance of CD1d tumor targeting was confirmed in tumor-bearing mice in which only the specific tumor-targeted CD1d fusion protein resulted in tumor inhibition of well-established aggressive tumor grafts. The therapeutic efficacy correlated with the repeated activation of iNKT and natural killer cells marked by their release of TH1 cytokines, despite the up-regulation of the co-inhibitory receptor PD-1. Our results demonstrate the superiority of providing the superagonist αGC loaded on recombinant CD1d proteins and support the use of αGC/sCD1d-antitumor fusion proteins to secure a sustained human and mouse iNKT cell activation, while targeting their cytotoxic activity and cytokine release to the tumor site.
Resumo:
The major task of policy makers and practitioners when confronted with a resource management problem is to decide on the potential solution(s) to adopt from a range of available options. However, this process is unlikely to be successful and cost effective without access to an independently verified and comprehensive available list of options. There is currently burgeoning interest in ecosystem services and quantitative assessments of their importance and value. Recognition of the value of ecosystem services to human well-being represents an increasingly important argument for protecting and restoring the natural environment, alongside the moral and ethical justifications for conservation. As well as understanding the benefits of ecosystem services, it is also important to synthesize the practical interventions that are capable of maintaining and/or enhancing these services. Apart from pest regulation, pollination, and global climate regulation, this type of exercise has attracted relatively little attention. Through a systematic consultation exercise, we identify a candidate list of 296 possible interventions across the main regulating services of air quality regulation, climate regulation, water flow regulation, erosion regulation, water purification and waste treatment, disease regulation, pest regulation, pollination and natural hazard regulation. The range of interventions differs greatly between habitats and services depending upon the ease of manipulation and the level of research intensity. Some interventions have the potential to deliver benefits across a range of regulating services, especially those that reduce soil loss and maintain forest cover. Synthesis and applications: Solution scanning is important for questioning existing knowledge and identifying the range of options available to researchers and practitioners, as well as serving as the necessary basis for assessing cost effectiveness and guiding implementation strategies. We recommend that it become a routine part of decision making in all environmental policy areas.
Resumo:
Although pharmaceutical metabolites are found in the aquatic environment, their toxicity on living organisms is poorly studied in general. Endoxifen and 4-hydroxy-tamoxifen (4OHTam) are two metabolites of the widely used anticancer drug tamoxifen for the prevention and treatment of breast cancers. Both metabolites have a high pharmacological potency in vertebrates, attributing prodrug characteristics to tamoxifen. Tamoxifen and its metabolites are body-excreted by patients, and the parent compound is found in sewage treatment plan effluents and natural waters. The toxicity of these potent metabolites on non-target aquatic species is unknown, which forces environmental risk assessors to predict their toxicity on aquatic species using knowledge on the parent compounds. Therefore, the aim of this study was to assess the sensitivity of two generations of the freshwater microcrustacean Daphnia pulex towards 4OHTam and endoxifen. Two chronic tests of 4OHTam and endoxifen were run in parallel and several endpoints were assessed. The results show that the metabolites 4OHTam and endoxifen induced reproductive and survival effects. For both metabolites, the sensitivity of D. pulex increased in the second generation. The intrinsic rate of natural increase (r) decreased with increasing 4OHTam and endoxifen concentrations. The No-Observed Effect Concentrations (NOECs) calculated for the reproduction of the second generation exposed to 4OHTam and endoxifen were <1.8 and 4.3μg/L, respectively, whereas the NOECs that were calculated for the intrinsic rate of natural increase were <1.8 and 0.4μg/L, respectively. Our study raises questions about prodrug and active metabolites in environmental toxicology assessments of pharmaceuticals. Our findings also emphasize the importance of performing long-term experiments and considering multi-endpoints instead of the standard reproduction outcome.
Resumo:
River restoration can enhance river dynamics, environmental heterogeneity and biodiversity, but the underlying processes governing the dynamic changes need to be understood to ensure that restoration projects meet their goals, and adverse effects are prevented. In particular, we need to comprehend how hydromorphological variability quantitatively relates to ecosystem functioning and services, biodiversity as well as ground-and surface water quality in restored river corridors. This involves (i) physical processes and structural properties, determining erosion and sedimentation, as well as solute and heat transport behavior in surface water and within the subsurface; (ii) biogeochemical processes and characteristics, including the turnover of nutrients and natural water constituents; and (iii) ecological processes and indicators related to biodiversity and ecological functioning. All these aspects are interlinked, requiring an interdisciplinary investigation approach. Here, we present an overview of the recently completed RECORD (REstored CORridor Dynamics) project in which we combined physical, chemical, and biological observations with modeling at a restored river corridor of the perialpine Thur River in Switzerland. Our results show that river restoration, beyond inducing morphologic changes that reshape the river bed and banks, triggered complex spatial patterns of bank infiltration, and affected habitat type, biotic communities and biogeochemical processes. We adopted an interdisciplinary approach of monitoring the continuing changes due to restoration measures to address the following questions: How stable is the morphological variability established by restoration? Does morphological variability guarantee an improvement in biodiversity? How does morphological variability affect biogeochemical transformations in the river corridor? What are some potential adverse effects of river restoration? How is river restoration influenced by catchment-scale hydraulics [GRAPHICS] and which feedbacks exist on the large scale? Beyond summarizing the major results of individual studies within the project, we show that these overarching questions could only be addressed in an interdisciplinary framework.
Resumo:
Tamoxifen and its metabolite 4-hydroxy-tamoxifen (4OHTam) are two potent molecules that have anticancer properties on breast cancers. Their medical use is expected to increase with the increasing global cancer rate. After consumption, patients excrete tamoxifen and the 4OHTam metabolite into wastewaters, and tamoxifen has been already detected in wastewaters and natural waters. The concentrations of 4OHTam in waters have never been reported. A single study reported 4OHTam effects on the microcrustacean Daphnia pulex. The effects of tamoxifen and 4OHTam over more than two generations are unknown in aquatic invertebrates. The main goal of this study was to assess the long-term sensitivity of the microcrustacean D. pulex over four generations, based on size, reproduction, viability and the intrinsic rate of natural increase (r). Additional experiments were carried out to observe whether the effects of tamoxifen and 4OHTam were reversible in the next generation after descendants were withdrawn from chemical stress (i.e., recovery experiment), and whether the lowest test concentration of each chemical induced toxic effects when both concentrations were combined (i.e., mixture experiments). Our results showed that tamoxifen and 4OHTam induced the adverse effects at environmentally relevant concentrations. Tamoxifen and 4OHTam impaired size, viability, reproduction and the r in four generations of treated D. pulex, but these effects were not clearly magnified over generations. Tamoxifen was more potent than 4OHTam on D. pulex. When used in a mixture, the combination of tamoxifen and 4OHTam induced effects in offspring, whereas no effects were observed when these chemicals were tested individually. In the recovery experiment, the reproduction and size were reduced in offspring withdrawn from chemical exposures. Our results suggested that tamoxifen and its metabolite may be a relevant pharmaceutical to consider in risk assessment.