164 resultados para Surface penetrating sealant
Resumo:
The biosynthesis, intracellular transport, and surface expression of the beta cell glucose transporter GLUT2 was investigated in isolated islets and insulinoma cells. Using a trypsin sensitivity assay to measure cell surface expression, we determined that: (a) greater than 95% of GLUT2 was expressed on the plasma membrane; (b) GLUT2 did not recycle in intracellular vesicles; and (c) after trypsin treatment, reexpression of the intact transporter occurred with a t1/2 of approximately 7 h. Kinetics of intracellular transport of GLUT2 was investigated in pulse-labeling experiments combined with glycosidase treatment and the trypsin sensitivity assay. We determined that transport from the endoplasmic reticulum to the trans-Golgi network (TGN) occurred with a t1/2 of 15 min and that transport from the TGN to the plasma membrane required a similar half-time. When added at the start of a pulse-labeling experiment, brefeldin A prevented exit of GLUT2 from the endoplasmic reticulum. When the transporter was first accumulated in the TGN during a 15-min period of chase, but not following a low temperature (22 degrees C) incubation, addition of brefeldin A (BFA) prevented subsequent surface expression of the transporter. This indicated that brefeldin A prevented GLUT2 exit from the TGN by acting at a site proximal to the 22 degrees C block. Together, these data demonstrate that GLUT2 surface expression in beta cells is via the constitutive pathway, that transport can be blocked by BFA at two distinct steps and that once on the surface, GLUT2 does not recycle in intracellular vesicles.
Resumo:
The neuronal monocarboxylate transporter, MCT2, is not only an energy substrate carrier but it is also purported to be a binding partner for the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit. To unravel a putative role of MCT2 in the regulation of GluR2 subcellular distribution, Neuro2A cells and primary cultures of mouse cortical neurons were co-transfected with plasmids containing sequences to express the fluorescent proteins mStrawberry (mStb)-fused MCT2 and Venus-fused GluR2. Subsequently, their subcellular distribution was visualized by fluorescence microscopy. GluR2 was led to form perinuclear and dendritic clusters together with MCT2 when co-transfected in Neuro2A cells or in neurons, following the original distribution of MCT2. MCT2 co-transfection had no effect on the intracellular distribution of several other post-synaptic proteins, although it partially affected the intracellular distribution of GluR1 similarly to GluR2. Both cell surface and total protein expression levels of GluR2 were significantly reduced by co-expression with MCT2. Finally, partial perinuclear and dendritic co-localization between MCT2 and Rab8, a member of the small GTPase family involved in membrane trafficking of AMPA receptors, was also observed in co-transfected neurons. These results suggest that MCT2 could influence AMPA receptor trafficking within neurons by modulating GluR2 sorting between different subcellular compartments.
Using 3D surface datasets to understand landslide evolution: From analogue models to real case study
Resumo:
Early detection of landslide surface deformation with 3D remote sensing techniques, as TLS, has become a great challenge during last decade. To improve our understanding of landslide deformation, a series of analogue simulation have been carried out on non-rigid bodies coupled with 3D digitizer. All these experiments have been carried out under controlled conditions, as water level and slope angle inclination. We were able to follow 3D surface deformation suffered by complex landslide bodies from precursory deformation still larger failures. These experiments were the basis for the development of a new algorithm for the quantification of surface deformation using automatic tracking method on discrete points of the slope surface. To validate the algorithm, comparisons were made between manually obtained results and algorithm surface displacement results. Outputs will help in understanding 3D deformation during pre-failure stages and failure mechanisms, which are fundamental aspects for future implementation of 3D remote sensing techniques in early warning systems.
Evaluation of two long synthetic merozoite surface protein 2 peptides as malaria vaccine candidates.
Resumo:
Merozoite surface protein 2 (MSP2) is a promising vaccine candidate against Plasmodium falciparum blood stages. A recombinant 3D7 form of MSP2 was a subunit of Combination B, a blood stage vaccine tested in the field in Papua New Guinea. A selective effect in favour of the allelic family not represented by the vaccine argued for a MSP2 vaccine consisting of both dimorphic variants. An alternative approach to recombinant manufacture of vaccines is the production of long synthetic peptides (LSP). LSP exceeding a length of well over 100 amino acids can now be routinely synthesized. Synthetic production of vaccine antigens cuts the often time-consuming steps of protein expression and purification short. This considerably reduces the time for a candidate to reach the phase of clinical trials. Here we present the evaluation of two long synthetic peptides representing both allelic families of MSP2 as potential vaccine candidates. The constructs were well recognized by human immune sera from different locations and different age groups. Furthermore, peptide-specific antibodies in human immune sera were associated with protection from clinical malaria. The synthetic fragments share major antigenic properties with native MSP2. Immunization of mice with these antigens yielded high titre antibody responses and monoclonal antibodies recognized parasite-derived MSP2. Our results justify taking these candidate poly-peptides into further vaccine development.
Resumo:
MsrR, a factor contributing to methicillin resistance in Staphylococcus aureus, belongs to the LytR-CpsA-Psr family of cell envelope-associated proteins. Deletion of msrR increased cell size and aggregation, and altered envelope properties, leading to a temporary reduction in cell surface hydrophobicity, diminished colony-spreading ability, and an increased susceptibility to Congo red. The reduced phosphorus content of purified cell walls of the msrR mutant suggested a reduction in wall teichoic acids, which may explain some of the observed phenotypes. Microarray analysis of the msrR deletion mutant revealed only minor changes in the global transcriptome, suggesting that MsrR has structural rather than regulatory functions. Importantly, virulence of the msrR mutant was decreased in a nematode-killing assay as well as in rat experimental endocarditis. MsrR is therefore likely to play a role in cell envelope maintenance, cell separation, and pathogenicity of S. aureus.
Resumo:
The method of sample recovery for trace detection and identification of explosives plays a critical role in several criminal investigations. After bombing, there can be difficulties in sending big objects to a laboratory for analysis. Traces can also be searched for on large surfaces, on hands of suspects or on surfaces where the explosive was placed during preparatory phases (e.g. places where an IED was assembled, vehicles used for transportation, etc.). In this work, triacetone triperoxide (TATP) was synthesized from commercial precursors following reported methods. Several portions of about 6 mg of TATP were then spread on different surfaces (e.g. floors, tables, etc.) or used in handling tests. Three different swabbing systems were used: a commercial swab, pre-wetted with propan-2-ol (isopropanol) and water (7:3), dry paper swabs, and cotton swabs wetted with propan-2-ol. Paper and commercial swabs were also used to sample a metal plate, where a small charge of about 4 g of TATP was detonated. Swabs were sealed in small glass jars with screw caps and Parafilm® M and sent to the laboratory for analysis. Swabs were extracted and analysed several weeks later by gas chromatography/mass spectrometry. All the three systems gave positive results, but wetted swabs collected higher amounts of TATP. The developed procedure showed its suitability for use in real cases, allowing TATP detection in several simulations, including a situation in which people wash their hands after handling the explosive.
Resumo:
It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.
Resumo:
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.
Resumo:
Cornea transplantation is one of the most performed graft procedures worldwide with an impressive success rate of 90%. However, for "high-risk" patients with particular ocular diseases in addition to the required surgery, the success rate is drastically reduced to 50%. In these cases, cyclosporin A (CsA) is frequently used to prevent the cornea rejection by a systemic treatment with possible systemic side effects for the patients. To overcome these problems, it is a challenge to prepare well-tolerated topical CsA formulations. Normally high amounts of oils or surfactants are needed for the solubilization of the very hydrophobic CsA. Furthermore, it is in general difficult to obtain ocular therapeutic drug levels with topical instillations due to the corneal barriers that efficiently protect the intraocular structures from foreign substances thus also from drugs. The aim of this study was to investigate in vivo the effects of a novel CsA topical aqueous formulation. This formulation was based on nanosized polymeric micelles as drug carriers. An established rat model for the prevention of cornea graft rejection after a keratoplasty procedure was used. After instillation of the novel formulation with fluorescent labeled micelles, confocal analysis of flat-mounted corneas clearly showed that the nanosized carriers were able to penetrate into all corneal layers. The efficacy of a 0.5% CsA micelle formulation was tested and compared to a physiological saline solution and to a systemic administration of CsA. In our studies, the topical CsA treatment was carried out for 14 days, and the three parameters (a) cornea transparency, (b) edema, and (c) neovascularization were evaluated by clinical observation and scoring. Compared to the control group, the treated group showed a significant higher cornea transparency and significant lower edema after 7 and 13 days of the surgery. At the end point of the study, the neovascularization was reduced by 50% in the CsA-micelle treated animals. The success rate of cornea graft transplantation was 73% in treated animals against 25% for the control group. This result was as good as observed for a systemic CsA treatment in the same animal model. This new formulation has the same efficacy like a systemic treatment but without the serious CsA systemic side effects. Ocular drug levels of transplanted and healthy rat eyes were dosed by UPLC/MS and showed a high CsA value in the cornea (11710 ± 7530 ng(CsA)/g(tissue) and 6470 ± 1730 ng(CsA)/g(tissue), respectively). In conclusion, the applied formulation has the capacity to overcome the ocular surface barriers, the micelles formed a drug reservoir in the cornea from, where a sustained release of CsA can take place. This novel formulation for topical application of CsA is clearly an effective and well-tolerated alternative to the systemic treatment for the prevention of corneal graft rejection.
Resumo:
INTRODUCTION: The analysis of glucosinolates (GS) is traditionally performed by reverse-phase liquid chromatography coupled to ultraviolet detection after a time-consuming desulphation step, which is required for increased retention. Simpler and more efficient alternative methods that can shorten both sample preparation and analysis are much needed. OBJECTIVE: To evaluate the feasibility of using ultrahigh-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) for the rapid profiling of intact GS. METHODOLOGY: A simple and short extraction of GS from Arabidopsis thaliana leaves was developed. Four sub-2 µm reverse-phase columns were tested for the rapid separation of these polar compounds using formic acid as the chromatographic additive. High-resolution QTOFMS was used to detect and identify GS. RESULTS: A novel charged surface hybrid (CSH) column was found to provide excellent retention and separation of GS within a total running time of 11 min. Twenty-one GS could be identified based on their accurate mass as well as isotopic and fragmentation patterns. The method was applied to determine the changes in GS content that occur after herbivory in Arabidopsis. In addition, we evaluated its applicability to the profiling of other Brassicaceae species. CONCLUSION: The method developed can profile the full range of GS, including the most polar ones, in a shorter time than previous methods, and is highly compatible with mass spectrometric detection.
Resumo:
According to the World Health Organization, 5.1% of blindnesses or visual impairments are related to corneal opacification. Cornea is a transparent tissue placed in front of the color of the eye. Its transparency is mandatory for vision. The ocular surface is a functional unit including the cornea and all the elements involved in maintaining its transparency i.e., the eyelids, the conjunctiva, the lymphoid tissue of the conjunctiva, the limbus, the lacrymal glands and the tear film. The destruction of the ocular surface is a disease caused by : traumatisms, infections, chronic inflammations, cancers, toxics, unknown causes or congenital abnormalities. The treatment of the ocular surface destruction requires a global strategy including all the elements that are involved in its physiology. The microenvironnement of the ocular surface must first be restored, i.e., the lids, the conjunctiva, the limbus and the structures that secrete the different layers of the tear film. In a second step, the transparency of the cornea can be reconstructed. A corneal graft performed in a healthy ocular surface microenvironnement will have a better survival rate. To achieve these goals, a thorough understanding of the renewal of the epitheliums and the role of the epithelial stem cells are mandatory.
Resumo:
The HtrA surface protease is involved in the virulence of many pathogens, mainly by its role in stress resistance and bacterial survival. Staphylococcus aureus encodes two putative HtrA-like proteases, referred to as HtrA(1) and HtrA(2). To investigate the roles of HtrA proteins in S. aureus, we constructed htrA(1), htrA(2), and htrA(1) htrA(2) insertion mutants in two genetically different virulent strains, RN6390 and COL. In the RN6390 context, htrA(1) inactivation resulted in sensitivity to puromycin-induced stress. The RN6390 htrA(1) htrA(2) mutant was affected in the expression of several secreted virulence factors comprising the agr regulon. This observation was correlated with the disappearance of the agr RNA III transcript in the RN6390 htrA(1) htrA(2) mutant. The virulence of this mutant was diminished in a rat model of endocarditis. In the COL context, both HtrA(1) and HtrA(2) were essential for thermal stress survival. However, only HtrA(1) had a slight effect on exoprotein expression. The htrA mutations did not diminish the virulence of the COL strain in the rat model of endocarditis. Our results indicate that HtrA proteins have different roles in S. aureus according to the strain, probably depending on specific differences in the regulation of virulence factor and stress protein expression. We propose that HtrA(1) and HtrA(2) contribute to pathogenicity by controlling the production of certain extracellular factors that are crucial for bacterial dissemination, as revealed in the RN6390 background. We speculate that HtrA proteins act in the agr-dependent regulation pathway by assuring folding and/or maturation of some surface components of the agr system.