42 resultados para Statistical modeling technique


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pharmacokinetic variability in drug levels represent for some drugs a major determinant of treatment success, since sub-therapeutic concentrations might lead to toxic reactions, treatment discontinuation or inefficacy. This is true for most antiretroviral drugs, which exhibit high inter-patient variability in their pharmacokinetics that has been partially explained by some genetic and non-genetic factors. The population pharmacokinetic approach represents a very useful tool for the description of the dose-concentration relationship, the quantification of variability in the target population of patients and the identification of influencing factors. It can thus be used to make predictions and dosage adjustment optimization based on Bayesian therapeutic drug monitoring (TDM). This approach has been used to characterize the pharmacokinetics of nevirapine (NVP) in 137 HIV-positive patients followed within the frame of a TDM program. Among tested covariates, body weight, co-administration of a cytochrome (CYP) 3A4 inducer or boosted atazanavir as well as elevated aspartate transaminases showed an effect on NVP elimination. In addition, genetic polymorphism in the CYP2B6 was associated with reduced NVP clearance. Altogether, these factors could explain 26% in NVP variability. Model-based simulations were used to compare the adequacy of different dosage regimens in relation to the therapeutic target associated with treatment efficacy. In conclusion, the population approach is very useful to characterize the pharmacokinetic profile of drugs in a population of interest. The quantification and the identification of the sources of variability is a rational approach to making optimal dosage decision for certain drugs administered chronically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Although several approaches have been already used to reduce radiation dose, CT doses are still among the high doses in radio-diagnostic. Recently, General Electric introduced a new imaging reconstruction technique, adaptive statistical iterative reconstruction (ASIR), allows to taking into account the statistical fluctuation of noise. The benefits of ASIR method were assessed through classic metrics and the evaluations of cardiac structures by radiologists. Methods and materials: A 64-row CT (MDCT) was employed. Catphan600 phantom acquisitions and 10 routine-dose CT examinations performed at 80 kVp were reconstructed with FBP and with 50% of ASIR. Six radiologists then assessed the visibility of main cardiac structures using the visual grading analysis (VGA) method. Results: On phantoms, for a constant value of SD (25 HU), CTDIvol is divided by 2 (8 mGy to 4 mGy) when 50% of ASIR is used. At constant CTDIvol, MTF medium frequencies were also significantly improved. First results indicated that clinical images reconstructed with ASIR had a better overall image quality compared with conventional reconstruction. This means that at constant image quality the radiation dose can be strongly reduced. Conclusion: The first results of this study shown that the ASIR method improves the image quality on phantoms by decreasing noise and improving resolution with respect to the classical one. Moreover, the benefit obtained is higher at lower doses. In clinical environment, a dose reduction can still be expected on 80 kVp low dose pediatric protocols using 50% of iterative reconstruction. Best ASIR percentage as a function of cardiac structures and detailed protocols will be presented for cardiac examinations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Hierarchical modeling has been proposed as a solution to the multiple exposure problem. We estimate associations between metabolic syndrome and different components of antiretroviral therapy using both conventional and hierarchical models. STUDY DESIGN AND SETTING: We use discrete time survival analysis to estimate the association between metabolic syndrome and cumulative exposure to 16 antiretrovirals from four drug classes. We fit a hierarchical model where the drug class provides a prior model of the association between metabolic syndrome and exposure to each antiretroviral. RESULTS: One thousand two hundred and eighteen patients were followed for a median of 27 months, with 242 cases of metabolic syndrome (20%) at a rate of 7.5 cases per 100 patient years. Metabolic syndrome was more likely to develop in patients exposed to stavudine, but was less likely to develop in those exposed to atazanavir. The estimate for exposure to atazanavir increased from hazard ratio of 0.06 per 6 months' use in the conventional model to 0.37 in the hierarchical model (or from 0.57 to 0.81 when using spline-based covariate adjustment). CONCLUSION: These results are consistent with trials that show the disadvantage of stavudine and advantage of atazanavir relative to other drugs in their respective classes. The hierarchical model gave more plausible results than the equivalent conventional model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A human in vivo toxicokinetic model was built to allow a better understanding of the toxicokinetics of folpet fungicide and its key ring biomarkers of exposure: phthalimide (PI), phthalamic acid (PAA) and phthalic acid (PA). Both PI and the sum of ring metabolites, expressed as PA equivalents (PAeq), may be used as biomarkers of exposure. The conceptual representation of the model was based on the analysis of the time course of these biomarkers in volunteers orally and dermally exposed to folpet. In the model, compartments were also used to represent the body burden of folpet and experimentally relevant PI, PAA and PA ring metabolites in blood and in key tissues as well as in excreta, hence urinary and feces. The time evolution of these biomarkers in each compartment of the model was then mathematically described by a system of coupled differential equations. The mathematical parameters of the model were then determined from best fits to the time courses of PI and PAeq in blood and urine of five volunteers administered orally 1 mg kg(-1) and dermally 10 mg kg(-1) of folpet. In the case of oral administration, the mean elimination half-life of PI from blood (through feces, urine or metabolism) was found to be 39.9 h as compared with 28.0 h for PAeq. In the case of a dermal application, mean elimination half-life of PI and PAeq was estimated to be 34.3 and 29.3 h, respectively. The average final fractions of administered dose recovered in urine as PI over the 0-96 h period were 0.030 and 0.002%, for oral and dermal exposure, respectively. Corresponding values for PAeq were 24.5 and 1.83%, respectively. Finally, the average clearance rate of PI from blood calculated from the oral and dermal data was 0.09 ± 0.03 and 0.13 ± 0.05 ml h(-1) while the volume of distribution was 4.30 ± 1.12 and 6.05 ± 2.22 l, respectively. It was not possible to obtain the corresponding values from PAeq data owing to the lack of blood time course data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The aim of the current study was to investigate the biomechanical stability and fixation strength provided by a posterior approach reconstruction technique to realign the craniovertebral junction.¦METHODS: We tested seven human cadaver occipito-cervical spines (occiput-C4) by applying pure moments of ±1.5 Nm on a spine tester. Each specimen was tested in the following modes: 1) intact; 2) injured; 3) spacers alone at C1-C2 articulation (S); 4) spacers plus C1-C2 Posterior Instrumentation (S+PI); and 5) spacers plus C1-C2 posterior instrumentation plus midline wiring (S+PI+MLW). C1-C2 range of motion for each construct was obtained in flexion-extension, lateral bending, and axial rotation.¦RESULTS: In all the loading modes, S, S+PI, and S+PI+MLW constructs significantly reduced range of motion compared with the intact and injured condition (P < 0.05). There was no statistical difference between any of the three instrumentation constructs (P > 0.05).¦CONCLUSIONS: This study investigated the biomechanics of the posterior approach technique for realignment of the craniovertebral junction and also made comparisons with additional posterior fixations. The stand-alone spacers were stable in all three loading modes. Posterior instrumentation increased the stability as compared to stand-alone spacers. The third point of fixation, carried out by using midline wiring, increased the stability further. However, there was not much difference in the stability imparted with the midline wiring versus without. The present study highlights the biomechanics of this novel concept and reaffirms the view that distraction of the C1-C2 articular facets and direct articular joint atlantoaxial fixation would be an ideal method of management of basilar invagination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The partial least squares technique (PLS) has been touted as a viable alternative to latent variable structural equation modeling (SEM) for evaluating theoretical models in the differential psychology domain. We bring some balance to the discussion by reviewing the broader methodological literature to highlight: (1) the misleading characterization of PLS as an SEM method; (2) limitations of PLS for global model testing; (3) problems in testing the significance of path coefficients; (4) extremely high false positive rates when using empirical confidence intervals in conjunction with a new "sign change correction" for path coefficients; (5) misconceptions surrounding the supposedly superior ability of PLS to handle small sample sizes and non-normality; and (6) conceptual and statistical problems with formative measurement and the application of PLS to such models. Additionally, we also reanalyze the dataset provided by Willaby et al. (2015; doi:10.1016/j.paid.2014.09.008) to highlight the limitations of PLS. Our broader review and analysis of the available evidence makes it clear that PLS is not useful for statistical estimation and testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. METHODS: The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. RESULTS: The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. CONCLUSION: The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: We present the retrospective analysis of a single-institution experience for radiosurgery (RS) in brain metastasis (BM) with Gamma Knife (GK) and Linac. Methods: From July 2010 to July 2012, 28 patients (with 83 lesions) had RS with GK and 35 patients (with 47 lesions) with Linac. The primary outcome was the local progression-free survival (LPFS). The secondary outcome was the overall survival (OS). Apart a standard statistical analysis, we included a Cox regression model with shared frailty, to modulate the within-patient correlation (preliminary evaluation showed a significant frailty effect, meaning that the correlation within patient could be ignored). Results: The mean follow-up period was 11.7 months (median 7.9, 1.7-22.7) for GK and 18.1 (median 17, 7.5-28.7) for Linac. The median number of lesions per patient was 2.5 (1-9) in GK compared with 1 (1-3) in Linac. There were more radioresistant lesions (melanoma) and more lesions located in functional areas for the GK group. The median dose was 24 Gy (GK) compared with 20 Gy (Linac). The LPFS actuarial rate was as follows: for GK at 3, 6, 9, 12, and 17 months: 96.96, 96.96, 96.96, 88.1, and 81.5%, and remained stable till 32 months; for Linac at 3, 6, 12, 17, 24, and 33 months, it was 91.5, 91.5, 91.5, 79.9, 55.5, and 17.1%, respectively (p = 0.03, chi-square test). After the Cox regression analysis with shared frailty, the p-value was not statistically significant between groups. The median overall survival was 9.7 months for GK and 23.6 months for Linac group. Uni- and multivariate analysis showed a lower GPA score and noncontrolled systemic status were associated with lower OS. Cox regression analysis adjusting for these two parameters showed comparable OS rate. Conclusions: In this comparative report between GK and Linac, preliminary analysis showed that more difficult cases are treated by GK, with patients harboring more lesions, radioresistant tumors, and highly functional located. The groups look, in this sense, very heterogeneous at baseline. After a Cox frailty model, the LPFS rates seemed very similar (p < 0.05). The OS was similar, after adjusting for systemic status and GPA score (p < 0.05). The technical reasons for choosing GK instead of Linac were the anatomical location related to highly functional areas, histology, technical limitations of Linac movements, especially lower posterior fossa locations, or closeness of multiple lesions to highly functional areas optimal dosimetry with Linac

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios.