50 resultados para Spectrum decision model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this article is to make a contribution to the regional reflection with regard to autism spectrum disorders (ASDs) at a key moment in which the authorities are requested by the users, professionals in the fields of health, pedagogy and education to put forward a structured answer to a multitude of expressed needs. The question for the creation of a competence pole of an academic tertiary level is posed in order to advise in the best possible way the families who do not know how to orient themselves in the maze and contradictions of the proposed solutions and to help the professionals who are submerged by an ever increasing demand of services exceeding the means of the existing institutions and who cannot justify their choices among the various existing theoretical and scientific models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assessed decision-making capacity and emotional reactivity in 20 patients with multiple sclerosis (MS) and in 16 healthy subjects using the Gambling Task (GT), a model of real-life decision making, and the skin conductance response (SCR). Demographic, neurological, affective, and cognitive parameters were analyzed in MS patients for their effect on decision-making performance. MS patients persisted longer (slope, -3.6%) than the comparison group (slope, -6.4%) in making disadvantageous choices as the GT progressed (p < 0.001), suggesting significant slower learning in MS. Patients with higher Expanded Disability Status Scale scores (EDSS >2.0) showed a different pattern of impairment in the learning process compared with patients with lower functional impairment (EDSS </=2.0). This slower learning was associated with impaired emotional reactivity (anticipatory SCR 3.9 vs 6.1 microSiemens [microS] for patients vs the comparison group, p < 0.0001; post-choice SCR 3.9 vs 6.2 microS, p < 0.0001), but not with executive dysfunction. Impaired emotional dimensions of behavior (assessed using the Dysexecutive Questionnaire, p < 0.002) also correlated with slower learning. Given the considerable consequences that impaired decision making can have on daily life, we suggest that this factor may contribute to handicap and altered quality of life secondary to MS and is dependent on emotional experience. Ann Neurol 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been repeatedly debated which strategies people rely on in inference. These debates have been difficult to resolve, partially because hypotheses about the decision processes assumed by these strategies have typically been formulated qualitatively, making it hard to test precise quantitative predictions about response times and other behavioral data. One way to increase the precision of strategies is to implement them in cognitive architectures such as ACT-R. Often, however, a given strategy can be implemented in several ways, with each implementation yielding different behavioral predictions. We present and report a study with an experimental paradigm that can help to identify the correct implementations of classic compensatory and non-compensatory strategies such as the take-the-best and tallying heuristics, and the weighted-linear model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The original cefepime product was withdrawn from the Swiss market in January 2007, and replaced by a generic 10 months later. The goals of the study were to assess the impact of this cefepime shortage on the use and costs of alternative broad-spectrum antibiotics, on antibiotic policy, and on resistance of Pseudomonas aeruginosa towards carbapenems, ceftazidime and piperacillin-tazobactam. A generalized regression-based interrupted time series model assessed how much the shortage changed the monthly use and costs of cefepime and of selected alternative broad-spectrum antibiotics (ceftazidime, imipenem-cilastatin, meropenem, piperacillin-tazobactam) in 15 Swiss acute care hospitals from January 2005 to December 2008. Resistance of P. aeruginosa was compared before and after the cefepime shortage. There was a statistically significant increase in the consumption of piperacillin-tazobactam in hospitals with definitive interruption of cefepime supply, and of meropenem in hospitals with transient interruption of cefepime supply. Consumption of each alternative antibiotic tended to increase during the cefepime shortage and to decrease when the cefepime generic was released. These shifts were associated with significantly higher overall costs. There was no significant change in hospitals with uninterrupted cefepime supply. The alternative antibiotics for which an increase in consumption showed the strongest association with a progression of resistance were the carbapenems. The use of alternative antibiotics after cefepime withdrawal was associated with a significant increase in piperacillin-tazobactam and meropenem use and in overall costs, and with a decrease in susceptibility of P. aeruginosa in hospitals. This warrants caution with regard to shortages and withdrawals of antibiotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Decision curve analysis has been introduced as a method to evaluate prediction models in terms of their clinical consequences if used for a binary classification of subjects into a group who should and into a group who should not be treated. The key concept for this type of evaluation is the "net benefit", a concept borrowed from utility theory. METHODS: We recall the foundations of decision curve analysis and discuss some new aspects. First, we stress the formal distinction between the net benefit for the treated and for the untreated and define the concept of the "overall net benefit". Next, we revisit the important distinction between the concept of accuracy, as typically assessed using the Youden index and a receiver operating characteristic (ROC) analysis, and the concept of utility of a prediction model, as assessed using decision curve analysis. Finally, we provide an explicit implementation of decision curve analysis to be applied in the context of case-control studies. RESULTS: We show that the overall net benefit, which combines the net benefit for the treated and the untreated, is a natural alternative to the benefit achieved by a model, being invariant with respect to the coding of the outcome, and conveying a more comprehensive picture of the situation. Further, within the framework of decision curve analysis, we illustrate the important difference between the accuracy and the utility of a model, demonstrating how poor an accurate model may be in terms of its net benefit. Eventually, we expose that the application of decision curve analysis to case-control studies, where an accurate estimate of the true prevalence of a disease cannot be obtained from the data, is achieved with a few modifications to the original calculation procedure. CONCLUSIONS: We present several interrelated extensions to decision curve analysis that will both facilitate its interpretation and broaden its potential area of application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE: An objective and simple prognostic model for patients with pulmonary embolism could be helpful in guiding initial intensity of treatment. OBJECTIVES: To develop a clinical prediction rule that accurately classifies patients with pulmonary embolism into categories of increasing risk of mortality and other adverse medical outcomes. METHODS: We randomly allocated 15,531 inpatient discharges with pulmonary embolism from 186 Pennsylvania hospitals to derivation (67%) and internal validation (33%) samples. We derived our prediction rule using logistic regression with 30-day mortality as the primary outcome, and patient demographic and clinical data routinely available at presentation as potential predictor variables. We externally validated the rule in 221 inpatients with pulmonary embolism from Switzerland and France. MEASUREMENTS: We compared mortality and nonfatal adverse medical outcomes across the derivation and two validation samples. MAIN RESULTS: The prediction rule is based on 11 simple patient characteristics that were independently associated with mortality and stratifies patients with pulmonary embolism into five severity classes, with 30-day mortality rates of 0-1.6% in class I, 1.7-3.5% in class II, 3.2-7.1% in class III, 4.0-11.4% in class IV, and 10.0-24.5% in class V across the derivation and validation samples. Inpatient death and nonfatal complications were <or= 1.1% among patients in class I and <or= 1.9% among patients in class II. CONCLUSIONS: Our rule accurately classifies patients with pulmonary embolism into classes of increasing risk of mortality and other adverse medical outcomes. Further validation of the rule is important before its implementation as a decision aid to guide the initial management of patients with pulmonary embolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters.A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed.In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements.The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper deals with the development and application of the methodology for automatic mapping of pollution/contamination data. General Regression Neural Network (GRNN) is considered in detail and is proposed as an efficient tool to solve this problem. The automatic tuning of isotropic and an anisotropic GRNN model using cross-validation procedure is presented. Results are compared with k-nearest-neighbours interpolation algorithm using independent validation data set. Quality of mapping is controlled by the analysis of raw data and the residuals using variography. Maps of probabilities of exceeding a given decision level and ?thick? isoline visualization of the uncertainties are presented as examples of decision-oriented mapping. Real case study is based on mapping of radioactively contaminated territories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

False identity documents represent a serious threat through their production and use in organized crime and by terrorist organizations. The present-day fight against this criminal problem and threats to national security does not appropriately address the organized nature of this criminal activity, treating each fraudulent document on its own during investigation and the judicial process, which causes linkage blindness and restrains the analysis capacity. Given the drawbacks of this case-by-case approach, this article proposes an original model in which false identity documents are used to inform a systematic forensic intelligence process. The process aims to detect links, patterns, and tendencies among false identity documents in order to support strategic and tactical decision making, thus sustaining a proactive intelligence-led approach to fighting identity document fraud and the associated organized criminality. This article formalizes both the model and the process, using practical applications to illustrate its powerful capabilities. This model has a general application and can be transposed to other fields of forensic science facing similar difficulties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Psychological predictors, such as personality traits, have aroused growing interest as possible predictors of late-life depression outcome in old age. It remains, however, unclear whether the cross-sectional relationship between personality traits and depression occurrence reported in younger samples is also present in the elderly. Methods: Comparisons amongst 79 outpatients with DSM-IV major depression and 102 healthy controls included assessment of the five-factor model of personality (NEO PI-R), socio-demographic variables, physical health status, as well as depression features. Two sub-groups were considered, defined as young (25-50 years) and old (60-85 years) patients. Results: Depressed patients showed significantly higher levels of Neuroticism and lower levels of Extraversion, Openness to Experience and Conscientiousness compared to controls. Sequential logistic regression models confirmed that the combination of increased physical burden, levels of dependency, and increased Neuroticism strongly predicts the occurrence of acute depressive symptoms. In contrast, the levels of Neuroticism did not allow for differentiating late-life from young age depression. Increased physical burden and decreased depression severity were the main predictors for this distinction. Conclusion: Our data indicate that personality factors and depression are related, independently of patients' age. Differences in this relationship are mainly due to the intensity of depressive symptoms rather than the patients' life period. They also stress the need to consider physical health, level of dependency and severity of symptoms when studying the relationship between personality traits and mood disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forensic intelligence is a distinct dimension of forensic science. Forensic intelligence processes have mostly been developed to address either a specific type of trace or a specific problem. Even though these empirical developments have led to successes, they are trace-specific in nature and contribute to the generation of silos which hamper the establishment of a more general and transversal model. Forensic intelligence has shown some important perspectives but more general developments are required to address persistent challenges. This will ensure the progress of the discipline as well as its widespread implementation in the future. This paper demonstrates that the description of forensic intelligence processes, their architectures, and the methods for building them can, at a certain level, be abstracted from the type of traces considered. A comparative analysis is made between two forensic intelligence approaches developed independently in Australia and in Europe regarding the monitoring of apparently very different kind of problems: illicit drugs and false identity documents. An inductive effort is pursued to identify similarities and to outline a general model. Besides breaking barriers between apparently separate fields of study in forensic science and intelligence, this transversal model would assist in defining forensic intelligence, its role and place in policing, and in identifying its contributions and limitations. The model will facilitate the paradigm shift from the current case-by-case reactive attitude towards a proactive approach by serving as a guideline for the use of forensic case data in an intelligence-led perspective. A follow-up article will specifically address issues related to comparison processes, decision points and organisational issues regarding forensic intelligence (part II).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Imipenem is a broad spectrum antibiotic used to treat severe infections in critically ill patients. Imipenem pharmacokinetics (PK) was evaluated in a cohort of neonates treated in the Neonatal Intensive Care Unit of the Lausanne University Hospital. The objective of our study was to identify key demographic and clinical factors influencing imipenem exposure in this population. Method: PK data from neonates and infants with at least one imipenem concentration measured between 2002 and 2013 were analyzed applying population PK modeling methods. Measurement of plasma concentrations were performed upon the decision of the physician within the frame of a therapeutic drug monitoring (TDM) programme. Effects of demographic (sex, body weight, gestational age, postnatal age) and clinical factors (serum creatinine as a measure of kidney function; co-administration of furosemide, spironolactone, hydrochlorothiazide, vancomycin, metronidazole and erythromycin) on imipenem PK were explored. Model-based simulations were performed (with a median creatinine value of 46 μmol/l) to compare various dosing regimens with respect to their ability to maintain drug levels above predefined minimum inhibitory concentrations (MIC) for at least 40 % of the dosing interval. Results: A total of 144 plasma samples was collected in 68 neonates and infants, predominantly preterm newborns, with median gestational age of 27 weeks (24 - 41 weeks) and postnatal age of 21 days (2 - 153 days). A two-compartment model best characterized imipenem disposition. Actual body weight exhibited the greatest impact on PK parameters, followed by age (gestational age and postnatal age) and serum creatinine on clearance. They explain 19%, 9%, 14% and 9% of the interindividual variability in clearance respectively. Model-based simulations suggested that 15 mg/kg every 12 hours maintain drug concentrations over a MIC of 2 mg/l for at least 40% of the dosing interval during the first days of life, whereas neonates older than 14 days of life required a dose of 20 mg/kg every 12 hours. Conclusion: Dosing strategies based on body weight and post-natal age are recommended for imipenem in all critically ill neonates and infants. Most current guidelines seem adequate for newborns and TDM should be restricted to some particular clinical situations.