89 resultados para Specific areas of management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In hyperdiploid acute lymphoblastic leukaemia (ALL), the simultaneous occurrence of specific aneuploidies confers a more favourable outcome than hyperdiploidy alone. Interphase (I) FISH complements conventional cytogenetics (CC) through its sensitivity and ability to detect chromosome aberrations in non-dividing cells. To overcome the limits of manual I-FISH, we developed an automated four-colour I-FISH approach and assessed its ability to detect concurrent aneuploidies in ALL. I-FISH was performed using centromeric probes for chromosomes 4, 6, 10 and 17. Parameters established for automatic nucleus selection and signal detection were evaluated (3 controls). Cut-off values were determined (10 controls, 1000 nuclei/case). Combinations of aneuploidies were considered relevant when each aneuploidy was individually significant. Results obtained in 10 ALL patients (1500 nuclei/patient) were compared with those by CC. Various combinations of aneuploidies were identified. All clones detected by CC were observed by I-FISH. I-FISH revealed numerous additional abnormal clones, ranging between 0.1% and 31.6%, based on the large number of nuclei evaluated. Four-colour automated I-FISH permits the identification of concurrent aneuploidies of prognostic significance in hyperdiploid ALL. Large numbers of cells can be analysed rapidly by this method. Owing to its high sensitivity, the method provides a powerful tool for the detection of small abnormal clones at diagnosis and during follow up. Compared to CC, it generates a more detailed cytogenetic picture, the biological and clinical significance of which merits further evaluation. Once optimised for a given set of probes, the system can be easily adapted for other probe combinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycoplasma hominis is a fastidious micro-organism causing genital and extragenital infections. We developed a specific real-time PCR that exhibits high sensitivity and low intrarun and interrun variabilities. When applied to clinical samples, this quantitative PCR allowed to confirm the role of M. hominis in three patients with severe extragenital infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Aspergillus fumigatus causes invasive aspergillosis, a potentially fatal infection in oncohematological patients. Innate immune detection of A. fumigatus involves Toll-like receptor (TLR) 4 and TLR2, which forms a heterodimer with either TLR1 or TLR6. The role of those coreceptors in Aspergillus sensing is unknown. Methods. Cytokine production was measured in bone marrow-derived macrophages (BMDMs) from wild-type (WT) and TLR-deficient mice after incubation with a WT and an immunogenic RodA-deficient (ΔrodA-47) strain of A. fumigatus and in lungs from these mice after intranasal mold inoculation. Aspergillus fumigatus-mediated NF-κB activation was measured in HEK293T cells transfected with plasmids expressing mouse or human TLRs. Results. Bone marrow-derived macrophages from TLR1- and TLR6-deficient mice produced lower amounts of interleukin 12p40, CXCL2, interleukin 6, and tumor necrosis factor α than BMDMs from WT mice after stimulation with A. fumigatus. Lungs from TLR1- and TLR6-deficient mice had diminished CXCL1 and CXCL2 production and increased fungal burden after intranasal inoculation of ΔrodA A. fumigatus compared with lungs from WT mice. ΔrodA strain-mediated NF-κB activation was observed in HEK293T cells expressing mouse TLR2/1, mouse TLR2/6, and human TLR2/1 but not human TLR2/6. Conclusions. Innate immune detection of A. fumigatus is mediated by TLR4 and TLR2 together with TLR1 or TLR6 in mice and TLR1 but not TLR6 in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A defect in glucose sensing of the pancreatic beta-cells has been observed in several animal models of type II diabetes and has been correlated with a reduced gene expression of the glucose transporter type 2 (Glut2). In a transgenic mouse model, expression of Glut2 antisense RNA in pancreatic beta-cells has recently been shown to be associated with an impaired glucose-induced insulin secretion and the development of diabetes. To identify factors that may be involved in the specific decrease of Glut2 in the beta-cells of the diabetic animal, an attempt was made to localize the cis-elements and trans-acting factors involved in the control of Glut2 expression in the endocrine pancreas. It was demonstrated by transient transfection studies that only 338 base pairs (bp) of the murine Glut2 proximal promoter are needed for reporter gene expression in pancreatic islet-derived cell lines, whereas no activity was detected in nonpancreatic cells. Three cis-elements, GTI, GTII, and GTIII, have been identified by DNAse I footprinting and gel retardation experiments within these 338 bp. GTI and GTIII bind distinct but ubiquitously expressed trans-acting factors. On the other hand, nuclear proteins specifically expressed in pancreatic cell lines interact with GTII, and their relative abundance correlates with endogenous Glut2 expression. These GTII-binding factors correspond to nuclear proteins of 180 and 90 kilodaltons as defined by Southwestern analysis. The 180-kilodalton factor is present in pancreatic beta-cell lines but not in an alpha-cell line. Mutation of the GTI or GTIII cis-elements decreases transcriptional activity directed by the 338-bp promoter, whereas mutation of GTII increases gene transcription. Thus negative and positive regulatory sequences are identified within the proximal 338 bp of the GLUT2 promoter and may participate in the islet-specific expression of the gene by binding beta-cell specific trans-acting factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T lymphocytes recognize antigen in the form of peptides that associate with specific alleles of class I or class II major histocompatibility (MHC) molecules. By contrast with the clear MHC allele-specific binding of peptides to purified class II molecules purified solubilized class I molecules either bind relatively poorly or show degenerate specificity. Using photo-affinity labelling, we demonstrate here the specific interaction of peptides with cell-associated MHC class I molecules and show that this involves metabolically active processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally.The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. RESULTS: In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM) is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH) is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. CONCLUSION: These observations reveal a metabolic segregation, not only at the cellular but also at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spermatogenesis is a temporally regulated developmental process by which the gonadotropin-responsive somatic Sertoli and Leydig cells act interdependently to direct the maturation of the germinal cells. The metabolism of Sertoli and Leydig cells is regulated by the pituitary gonadotropins FSH and LH, which, in turn, activate adenylate cyclase. Because the cAMP-second messenger pathway is activated by FSH and LH, we postulated that the cAMP-responsive element-binding protein (CREB) plays a physiological role in Sertoli and Leydig cells, respectively. Immunocytochemical analyses of rat testicular sections show a remarkably high expression of CREB in the haploid round spermatids and, to some extent, in pachytene spermatocytes and Sertoli cells. Although most of the CREB antigen is detected in the nuclei, some CREB antigen is also present in the cytoplasm. Remarkably, the cytoplasmic CREB results from the translation of a unique alternatively spliced transcript of the CREB gene that incorporates an exon containing multiple stop codons inserted immediately up-stream of the exons encoding the DNA-binding domain of CREB. Thus, the RNA containing the alternatively spliced exon encodes a truncated transcriptional transactivator protein lacking both the DNA-binding domain and nuclear translocation signal of CREB. Most of the CREB transcripts detected in the germinal cells contain the alternatively spliced exon, suggesting a function of the exon to modulate the synthesis of CREB. In the Sertoli cells we observed a striking cyclical (12-day periodicity) increase in the levels of CREB mRNA that coincides with the splicing out of the restrictive exon containing the stop codons. Because earlier studies established that FSH-stimulated cAMP levels in Sertoli cells are also cyclical, and the CREB gene promoter contains cAMP-responsive enhancers, we suggest that the alternative RNA splicing controls a positive autoregulation of CREB gene expression mediated by cAMP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed numerical simulations of DNA chains to understand how local geometry of juxtaposed segments in knotted DNA molecules can guide type II DNA topoisomerases to perform very efficient relaxation of DNA knots. We investigated how the various parameters defining the geometry of inter-segmental juxtapositions at sites of inter-segmental passage reactions mediated by type II DNA topoisomerases can affect the topological consequences of these reactions. We confirmed the hypothesis that by recognizing specific geometry of juxtaposed DNA segments in knotted DNA molecules, type II DNA topoisomerases can maintain the steady-state knotting level below the topological equilibrium. In addition, we revealed that a preference for a particular geometry of juxtaposed segments as sites of strand-passage reaction enables type II DNA topoisomerases to select the most efficient pathway of relaxation of complex DNA knots. The analysis of the best selection criteria for efficient relaxation of complex knots revealed that local structures in random configurations of a given knot type statistically behave as analogous local structures in ideal geometric configurations of the corresponding knot type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three phosphatidylinositol-3-kinase-related protein kinases implement cellular responses to DNA damage. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia-telangiectasia mutated respond primarily to DNA double-strand breaks (DSBs). Ataxia-telangiectasia and RAD3-related (ATR) signals the accumulation of replication protein A (RPA)-covered single-stranded DNA (ssDNA), which is caused by replication obstacles. Stalled replication intermediates can further degenerate and yield replication-associated DSBs. In this paper, we show that the juxtaposition of a double-stranded DNA end and a short ssDNA gap triggered robust activation of endogenous ATR and Chk1 in human cell-free extracts. This DNA damage signal depended on DNA-PKcs and ATR, which congregated onto gapped linear duplex DNA. DNA-PKcs primed ATR/Chk1 activation through DNA structure-specific phosphorylation of RPA32 and TopBP1. The synergistic activation of DNA-PKcs and ATR suggests that the two kinases combine to mount a prompt and specific response to replication-born DSBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review describes some dysimmune neuromuscular disorders and their recent management: syndrome of peripheral nerve hyperexcitability (treatment of cramps, immunosuppressors); Guillain-Barré syndrome (new mechanisms and consensus treatment); chronic inflammatory demyelinating polyradiculoneuropathy (new indication for the use of pulse dexamethasone, new scores of activity); importance of subcutaneous immunoglobulin in multifocal motor neuropathy and of infusions of rituximab in myasthenia gravis; new entities in myositis and their treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MOTIVATION: High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. Results: We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absence of the transcriptional repressor RE-1 Silencing Transcription Factor (REST) in insulin-secreting beta cells is a major cue for the specific expression of a large number of genes. These REST target genes were largely ascribed to a function of neurotransmission in a neuronal context, whereas their role in pancreatic beta cells has been poorly explored. To identify their functional significance, we have generated transgenic mice expressing REST in beta cells (RIP-REST mice), and previously discovered that REST target genes are essential to insulin exocytosis. Herein we characterized a novel line of RIP-REST mice featuring diabetes. In diabetic RIP-REST mice, high levels of REST were associated with postnatal beta cell apoptosis, which resulted in gradual beta cell loss and sustained hyperglycemia in adults. Moreover, adenoviral REST transduction in INS-1E cells led to increased cell death under control conditions, and sensitized cells to death induced by cytokines. Screening for REST target genes identified several anti-apoptotic genes bearing the binding motif RE-1 that were downregulated upon REST expression in INS-1E cells, including Gjd2, Mapk8ip1, Irs2, Ptprn, and Cdk5r2. Decreased levels of Cdk5r2 in beta cells of RIP-REST mice further confirmed that it is controlled by REST, in vivo. Using siRNA-mediated knock-down in INS-1E cells, we showed that Cdk5r2 protects beta cells against cytokines and palmitate-induced apoptosis. Together, these data document that a set of REST target genes, including Cdk5r2, is important for beta cell survival.