81 resultados para Spatial Mixture Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D(2), +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two different approaches currently prevail for predicting spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) focuses directly on realised properties of species assemblages, whereas the second approach (stacked species distribution modelling, S-SDM) starts with constituent species to approximate assemblage properties. Here, we propose to unify the two approaches in a single 'spatially-explicit species assemblage modelling' (SESAM) framework. This framework uses relevant species source pool designations, macroecological factors, and ecological assembly rules to constrain predictions of the richness and composition of species assemblages obtained by stacking predictions of individual species distributions. We believe that such a framework could prove useful in many theoretical and applied disciplines of ecology and evolution, both for improving our basic understanding of species assembly across spatio-temporal scales and for anticipating expected consequences of local, regional or global environmental changes. In this paper, we propose such a framework and call for further developments and testing across a broad range of community types in a variety of environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a review of methodology for semi-supervised modeling with kernel methods, when the manifold assumption is guaranteed to be satisfied. It concerns environmental data modeling on natural manifolds, such as complex topographies of the mountainous regions, where environmental processes are highly influenced by the relief. These relations, possibly regionalized and nonlinear, can be modeled from data with machine learning using the digital elevation models in semi-supervised kernel methods. The range of the tools and methodological issues discussed in the study includes feature selection and semisupervised Support Vector algorithms. The real case study devoted to data-driven modeling of meteorological fields illustrates the discussed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interspecific competition, life history traits, environmental heterogeneity and spatial structure as well as disturbance are known to impact the successful dispersal strategies in metacommunities. However, studies on the direction of impact of those factors on dispersal have yielded contradictory results and often considered only few competing dispersal strategies at the same time. We used a unifying modeling approach to contrast the combined effects of species traits (adult survival, specialization), environmental heterogeneity and structure (spatial autocorrelation, habitat availability) and disturbance on the selected, maintained and coexisting dispersal strategies in heterogeneous metacommunities. Using a negative exponential dispersal kernel, we allowed for variation of both species dispersal distance and dispersal rate. We showed that strong disturbance promotes species with high dispersal abilities, while low local adult survival and habitat availability select against them. Spatial autocorrelation favors species with higher dispersal ability when adult survival and disturbance rate are low, and selects against them in the opposite situation. Interestingly, several dispersal strategies coexist when disturbance and adult survival act in opposition, as for example when strong disturbance regime favors species with high dispersal abilities while low adult survival selects species with low dispersal. Our results unify apparently contradictory previous results and demonstrate that spatial structure, disturbance and adult survival determine the success and diversity of coexisting dispersal strategies in competing metacommunities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim This study used data from temperate forest communities to assess: (1) five different stepwise selection methods with generalized additive models, (2) the effect of weighting absences to ensure a prevalence of 0.5, (3) the effect of limiting absences beyond the environmental envelope defined by presences, (4) four different methods for incorporating spatial autocorrelation, and (5) the effect of integrating an interaction factor defined by a regression tree on the residuals of an initial environmental model. Location State of Vaud, western Switzerland. Methods Generalized additive models (GAMs) were fitted using the grasp package (generalized regression analysis and spatial predictions, http://www.cscf.ch/grasp). Results Model selection based on cross-validation appeared to be the best compromise between model stability and performance (parsimony) among the five methods tested. Weighting absences returned models that perform better than models fitted with the original sample prevalence. This appeared to be mainly due to the impact of very low prevalence values on evaluation statistics. Removing zeroes beyond the range of presences on main environmental gradients changed the set of selected predictors, and potentially their response curve shape. Moreover, removing zeroes slightly improved model performance and stability when compared with the baseline model on the same data set. Incorporating a spatial trend predictor improved model performance and stability significantly. Even better models were obtained when including local spatial autocorrelation. A novel approach to include interactions proved to be an efficient way to account for interactions between all predictors at once. Main conclusions Models and spatial predictions of 18 forest communities were significantly improved by using either: (1) cross-validation as a model selection method, (2) weighted absences, (3) limited absences, (4) predictors accounting for spatial autocorrelation, or (5) a factor variable accounting for interactions between all predictors. The final choice of model strategy should depend on the nature of the available data and the specific study aims. Statistical evaluation is useful in searching for the best modelling practice. However, one should not neglect to consider the shapes and interpretability of response curves, as well as the resulting spatial predictions in the final assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Aim - Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data.¦2. Location - Europe, North America, South America¦3. Methods - The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with predefined distributions and amounts of niche overlap to evaluate several ordination and species distribution modeling techniques for quantifying niche overlap. We illustrate the approach with data on two well-studied invasive species.¦4. Results - We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographic space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results.¦5. Main conclusions - The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate to study niche differences between species, subspecies or intraspecific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intraspecific lineage has changed over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although dispersal is recognized as a key issue in several fields of population biology (such as behavioral ecology, population genetics, metapopulation dynamics or evolutionary modeling), these disciplines focus on different aspects of the concept and often make different implicit assumptions regarding migration models. Using simulations, we investigate how such assumptions translate into effective gene flow and fixation probability of selected alleles. Assumptions regarding migration type (e.g. source-sink, resident pre-emption, or balanced dispersal) and patterns (e.g. stepping-stone versus island dispersal) have large impacts when demes differ in sizes or selective pressures. The effects of fragmentation, as well as the spatial localization of newly arising mutations, also strongly depend on migration type and patterns. Migration rate also matters: depending on the migration type, fixation probabilities at an intermediate migration rate may lie outside the range defined by the low- and high-migration limits when demes differ in sizes. Given the extreme sensitivity of fixation probability to characteristics of dispersal, we underline the importance of making explicit (and documenting empirically) the crucial ecological/ behavioral assumptions underlying migration models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in community ecology is a thorough understanding of the processes that govern the assembly and composition of communities in time and space. The growing threat of climate change to the vascular plant biodiversity of fragile ecosystems such as mountains has made it equally imperative to develop comprehensive methodologies to provide insights into how communities are assembled. In this perspective, the primary objective of this PhD thesis is to contribute to the theoretical and methodological development of community ecology, by proposing new solutions to better detect the ecological and evolutionary processes that govern community assembly. As phylogenetic trees provide by far, the most advanced tools to integrate the spatial, ecological and evolutionary dynamics of plant communities, they represent the cornerstone on which this work was based. In this thesis, I proposed new solutions to: (i) reveal trends in community assembly on phylogenies, depicted by the transition of signals at the nodes of the different species and lineages responsible for community assembly, (ii) contribute to evidence the importance of evolutionarily labile traits in the distribution of mountain plant species. More precisely, I demonstrated that phylogenetic and functional compositional turnover in plant communities was driven by climate and human land use gradients mostly influenced by evolutionarily labile traits, (iii) predict and spatially project the phylogenetic structure of communities using species distribution models, to identify the potential distribution of phylogenetic diversity, as well as areas of high evolutionary potential along elevation. The altitudinal setting of the Diablerets mountains (Switzerland) provided an appropriate model for this study. The elevation gradient served as a compression of large latitudinal variations similar to a collection of islands within a single area, and allowed investigations on a large number of plant communities. Overall, this thesis highlights that stochastic and deterministic environmental filtering processes mainly influence the phylogenetic structure of plant communities in mountainous areas. Negative density-dependent processes implied through patterns of phylogenetic overdispersion were only detected at the local scale, whereas environmental filtering implied through phylogenetic clustering was observed at both the regional and local scale. Finally, the integration of indices of phylogenetic community ecology with species distribution models revealed the prospects of providing novel and insightful explanations on the potential distribution of phylogenetic biodiversity in high mountain areas. These results generally demonstrate the usefulness of phylogenies in inferring assembly processes, and are worth considering in the theoretical and methodological development of tools to better understand phylogenetic community structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : The existence of a causal relationship between the spatial distribution of living organisms and their environment, in particular climate, has been long recognized and is the central principle of biogeography. In turn, this recognition has led scientists to the idea of using the climatic, topographic, edaphic and biotic characteristics of the environment to predict its potential suitability for a given species or biological community. In this thesis, my objective is to contribute to the development of methodological improvements in the field of species distribution modeling. More precisely, the objectives are to propose solutions to overcome limitations of species distribution models when applied to conservation biology issues, or when .used as an assessment tool of the potential impacts of global change. The first objective of my thesis is to contribute to evidence the potential of species distribution models for conservation-related applications. I present a methodology to generate pseudo-absences in order to overcome the frequent lack of reliable absence data. I also demonstrate, both theoretically (simulation-based) and practically (field-based), how species distribution models can be successfully used to model and sample rare species. Overall, the results of this first part of the thesis demonstrate the strong potential of species distribution models as a tool for practical applications in conservation biology. The second objective this thesis is to contribute to improve .projections of potential climate change impacts on species distributions, and in particular for mountain flora. I develop and a dynamic model, MIGCLIM, that allows the implementation of dispersal limitations into classic species distribution models and present an application of this model to two virtual species. Given that accounting for dispersal limitations requires information on seed dispersal, distances, a general methodology to classify species into broad dispersal types is also developed. Finally, the M~GCLIM model is applied to a large number of species in a study area of the western Swiss Alps. Overall, the results indicate that while dispersal limitations can have an important impact on the outcome of future projections of species distributions under climate change scenarios, estimating species threat levels (e.g. species extinction rates) for a mountainous areas of limited size (i.e. regional scale) can also be successfully achieved when considering dispersal as unlimited (i.e. ignoring dispersal limitations, which is easier from a practical point of view). Finally, I present the largest fine scale assessment of potential climate change impacts on mountain vegetation that has been carried-out to date. This assessment involves vegetation from 12 study areas distributed across all major western and central European mountain ranges. The results highlight that some mountain ranges (the Pyrenees and the Austrian Alps) are expected to be more affected by climate change than others (Norway and the Scottish Highlands). The results I obtain in this study also indicate that the threat levels projected by fine scale models are less severe than those derived from coarse scale models. This result suggests that some species could persist in small refugias that are not detected by coarse scale models. Résumé : L'existence d'une relation causale entre la répartition des espèces animales et végétales et leur environnement, en particulier le climat, a été mis en évidence depuis longtemps et est un des principes centraux en biogéographie. Ce lien a naturellement conduit à l'idée d'utiliser les caractéristiques climatiques, topographiques, édaphiques et biotiques de l'environnement afin d'en prédire la qualité pour une espèce ou une communauté. Dans ce travail de thèse, mon objectif est de contribuer au développement d'améliorations méthodologiques dans le domaine de la modélisation de la distribution d'espèces dans le paysage. Plus précisément, les objectifs sont de proposer des solutions afin de surmonter certaines limitations des modèles de distribution d'espèces dans des applications pratiques de biologie de la conservation ou dans leur utilisation pour évaluer l'impact potentiel des changements climatiques sur l'environnement. Le premier objectif majeur de mon travail est de contribuer à démontrer le potentiel des modèles de distribution d'espèces pour des applications pratiques en biologie de la conservation. Je propose une méthode pour générer des pseudo-absences qui permet de surmonter le problème récurent du manque de données d'absences fiables. Je démontre aussi, de manière théorique (par simulation) et pratique (par échantillonnage de terrain), comment les modèles de distribution d'espèces peuvent être utilisés pour modéliser et améliorer l'échantillonnage des espèces rares. Ces résultats démontrent le potentiel des modèles de distribution d'espèces comme outils pour des applications de biologie de la conservation. Le deuxième objectif majeur de ce travail est de contribuer à améliorer les projections d'impacts potentiels des changements climatiques sur la flore, en particulier dans les zones de montagnes. Je développe un modèle dynamique de distribution appelé MigClim qui permet de tenir compte des limitations de dispersion dans les projections futures de distribution potentielle d'espèces, et teste son application sur deux espèces virtuelles. Vu que le fait de prendre en compte les limitations dues à la dispersion demande des données supplémentaires importantes (p.ex. la distance de dispersion des graines), ce travail propose aussi une méthode de classification simplifiée des espèces végétales dans de grands "types de disperseurs", ce qui permet ainsi de d'obtenir de bonnes approximations de distances de dispersions pour un grand nombre d'espèces. Finalement, j'applique aussi le modèle MIGCLIM à un grand nombre d'espèces de plantes dans une zone d'études des pré-Alpes vaudoises. Les résultats montrent que les limitations de dispersion peuvent avoir un impact considérable sur la distribution potentielle d'espèces prédites sous des scénarios de changements climatiques. Cependant, quand les modèles sont utilisés pour évaluer les taux d'extinction d'espèces dans des zones de montages de taille limitée (évaluation régionale), il est aussi possible d'obtenir de bonnes approximations en considérant la dispersion des espèces comme illimitée, ce qui est nettement plus simple d'un point dé vue pratique. Pour terminer je présente la plus grande évaluation à fine échelle d'impact potentiel des changements climatiques sur la flore des montagnes conduite à ce jour. Cette évaluation englobe 12 zones d'études réparties sur toutes les chaines de montages principales d'Europe occidentale et centrale. Les résultats montrent que certaines chaines de montagnes (les Pyrénées et les Alpes Autrichiennes) sont projetées comme plus sensibles aux changements climatiques que d'autres (les Alpes Scandinaves et les Highlands d'Ecosse). Les résultats obtenus montrent aussi que les modèles à échelle fine projettent des impacts de changement climatiques (p. ex. taux d'extinction d'espèces) moins sévères que les modèles à échelle large. Cela laisse supposer que les modèles a échelle fine sont capables de modéliser des micro-niches climatiques non-détectées par les modèles à échelle large.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding factors that shape ranges of species is central in evolutionary biology. Species distribution models have become important tools to test biogeographical, ecological and evolutionary hypotheses. Moreover, from an ecological and evolutionary perspective, these models help to elucidate the spatial strategies of species at a regional scale. We modelled species distributions of two phylogenetically, geographically and ecologically close Tupinambis species (Teiidae) that occupy the southernmost area of the genus distribution in South America. We hypothesized that similarities between these species might have induced spatial strategies at the species level, such as niche differentiation and divergence of distribution patterns at a regional scale. Using logistic regression and MaxEnt we obtained species distribution models that revealed interspecific differences in habitat requirements, such as environmental temperature, precipitation and altitude. Moreover, the models obtained suggest that although the ecological niches of Tupinambis merianae and T. rufescens are different, these species might co-occur in a large contact zone. We propose that niche plasticity could be the mechanism enabling their co-occurrence. Therefore, the approach used here allowed us to understand the spatial strategies of two Tupinambis lizards at a regional scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of statistical models for forensic fingerprint identification purposes has been the subject of increasing research attention in recent years. This can be partly seen as a response to a number of commentators who claim that the scientific basis for fingerprint identification has not been adequately demonstrated. In addition, key forensic identification bodies such as ENFSI [1] and IAI [2] have recently endorsed and acknowledged the potential benefits of using statistical models as an important tool in support of the fingerprint identification process within the ACE-V framework. In this paper, we introduce a new Likelihood Ratio (LR) model based on Support Vector Machines (SVMs) trained with features discovered via morphometric and spatial analyses of corresponding minutiae configurations for both match and close non-match populations often found in AFIS candidate lists. Computed LR values are derived from a probabilistic framework based on SVMs that discover the intrinsic spatial differences of match and close non-match populations. Lastly, experimentation performed on a set of over 120,000 publicly available fingerprint images (mostly sourced from the National Institute of Standards and Technology (NIST) datasets) and a distortion set of approximately 40,000 images, is presented, illustrating that the proposed LR model is reliably guiding towards the right proposition in the identification assessment of match and close non-match populations. Results further indicate that the proposed model is a promising tool for fingerprint practitioners to use for analysing the spatial consistency of corresponding minutiae configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim  The imperfect detection of species may lead to erroneous conclusions about species-environment relationships. Accuracy in species detection usually requires temporal replication at sampling sites, a time-consuming and costly monitoring scheme. Here, we applied a lower-cost alternative based on a double-sampling approach to incorporate the reliability of species detection into regression-based species distribution modelling.Location  Doñana National Park (south-western Spain).Methods  Using species-specific monthly detection probabilities, we estimated the detection reliability as the probability of having detected the species given the species-specific survey time. Such reliability estimates were used to account explicitly for data uncertainty by weighting each absence. We illustrated how this novel framework can be used to evaluate four competing hypotheses as to what constitutes primary environmental control of amphibian distribution: breeding habitat, aestivating habitat, spatial distribution of surrounding habitats and/or major ecosystems zonation. The study was conducted on six pond-breeding amphibian species during a 4-year period.Results  Non-detections should not be considered equivalent to real absences, as their reliability varied considerably. The occurrence of Hyla meridionalis and Triturus pygmaeus was related to a particular major ecosystem of the study area, where suitable habitat for these species seemed to be widely available. Characteristics of the breeding habitat (area and hydroperiod) were of high importance for the occurrence of Pelobates cultripes and Pleurodeles waltl. Terrestrial characteristics were the most important predictors of the occurrence of Discoglossus galganoi and Lissotriton boscai, along with spatial distribution of breeding habitats for the last species.Main conclusions  We did not find a single best supported hypothesis valid for all species, which stresses the importance of multiscale and multifactor approaches. More importantly, this study shows that estimating the reliability of non-detection records, an exercise that had been previously seen as a naïve goal in species distribution modelling, is feasible and could be promoted in future studies, at least in comparable systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. The paper considers a data driven approach in modelling uncertainty in spatial predictions. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic features and describe stochastic variability and non-uniqueness of spatial properties. It is able to capture and preserve key spatial dependencies such as connectivity, which is often difficult to achieve with two-point geostatistical models. Semi-supervised SVR is designed to integrate various kinds of conditioning data and learn dependences from them. A stochastic semi-supervised SVR model is integrated into a Bayesian framework to quantify uncertainty with multiple models fitted to dynamic observations. The developed approach is illustrated with a reservoir case study. The resulting probabilistic production forecasts are described by uncertainty envelopes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.