67 resultados para Single-commodity capacitated network design problem
Resumo:
This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method - wavelet analysis residual kriging (WARK) - is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.
Resumo:
We study an adaptive statistical approach to analyze brain networks represented by brain connection matrices of interregional connectivity (connectomes). Our approach is at a middle level between a global analysis and single connections analysis by considering subnetworks of the global brain network. These subnetworks represent either the inter-connectivity between two brain anatomical regions or by the intra-connectivity within the same brain anatomical region. An appropriate summary statistic, that characterizes a meaningful feature of the subnetwork, is evaluated. Based on this summary statistic, a statistical test is performed to derive the corresponding p-value. The reformulation of the problem in this way reduces the number of statistical tests in an orderly fashion based on our understanding of the problem. Considering the global testing problem, the p-values are corrected to control the rate of false discoveries. Finally, the procedure is followed by a local investigation within the significant subnetworks. We contrast this strategy with the one based on the individual measures in terms of power. We show that this strategy has a great potential, in particular in cases where the subnetworks are well defined and the summary statistics are properly chosen. As an application example, we compare structural brain connection matrices of two groups of subjects with a 22q11.2 deletion syndrome, distinguished by their IQ scores.
Resumo:
Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available.
Resumo:
Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.
Resumo:
Purpose: Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, "endogenous" biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that downmodulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem.Experimental Design: The single-chain variable region gene of the murine 1F5 anti-CD20 antibody was fused to the wild-type (WT) SAv gene and to mutant SAv genes, Y43A-SAv and S45A-SAv. FPs were expressed, purified, and compared in studies using athymic mice bearing Ramos lymphoma xenografts.Results: Biodistribution studies showed delivery of more radioactivity to tumors of mice pretargeted with mutant SAv FPs followed by (111)In-DOTA-bis-biotin [6.2 +/- 1.7% of the injected dose per gram (%ID/gm) of tumor 24 hours after Y43A-SAv FP and 5.6 +/- 2.2%ID/g with S45A-SAv FP] than in mice on normal diets pretargeted with WT-SAv FP (2.5 +/- 1.6%ID/g; P = 0.01). These superior biodistributions translated into superior antitumor efficacy in mice treated with mutant FPs and (90)Y-DOTA-bis-biotin [tumor volumes after 11 days: 237 +/- 66 mm(3) with Y43A-SAv, 543 +/- 320 mm(3) with S45A-SAv, 1129 +/- 322 mm(3) with WT-SAv, and 1435 +/- 212 mm(3) with control FP (P < 0.0001)].Conclusions: Genetically engineered mutant-SAv FPs and bis-biotin reagents provide an attractive alternative to current SAv-biotin PRIT methods in settings where endogenous biotin levels are high. Clin Cancer Res; 17(23); 7373-82. (C)2011 AACR.
Resumo:
The HbpR protein is the sigma54-dependent transcription activator for 2-hydroxybiphenyl degradation in Pseudomonas azelaica. The ability of HbpR and XylR, which share 35% amino acid sequence identity, to cross-activate the PhbpC and Pu promoters was investigated by determining HbpR- or XylR-mediated luciferase expression and by DNA binding assays. XylR measurably activated the PhbpC promoter in the presence of the effector m-xylene, both in Escherichia coli and Pseudomonas putida. HbpR weakly stimulated the Pu promoter in E. coli but not in P. azelaica. Poor HbpR-dependent activation from Pu was caused by a weak binding to the operator region. To create promoters efficiently activated by both regulators, the HbpR binding sites on PhbpC were gradually changed into the XylR binding sites of Pu by site-directed mutagenesis. Inducible luciferase expression from mutated promoters was tested in E. coli on a two plasmid system, and from mono copy gene fusions in P. azelaica and P. putida. Some mutants were efficiently activated by both HbpR and XylR, showing that promoters can be created which are permissive for both regulators. Others achieved a higher XylR-dependent transcription than from Pu itself. Mutants were also obtained which displayed a tenfold lower uninduced expression level by HbpR than the wild-type PhbpC, while keeping the same maximal induction level. On the basis of these results, a dual-responsive bioreporter strain of P. azelaica was created, containing both XylR and HbpR, and activating luciferase expression from the same single promoter independently with m-xylene and 2-hydroxybiphenyl.
Resumo:
We present a novel approach for analyzing single-trial electroencephalography (EEG) data, using topographic information. The method allows for visualizing event-related potentials using all the electrodes of recordings overcoming the problem of previous approaches that required electrode selection and waveforms filtering. We apply this method to EEG data from an auditory object recognition experiment that we have previously analyzed at an ERP level. Temporally structured periods were statistically identified wherein a given topography predominated without any prior information about the temporal behavior. In addition to providing novel methods for EEG analysis, the data indicate that ERPs are reliably observable at a single-trial level when examined topographically.
Resumo:
Deeply incised river networks are generally regarded as robust features that are not easily modified by erosion or tectonics. Although the reorganization of deeply incised drainage systems has been documented, the corresponding importance with regard to the overall landscape evolution of mountain ranges and the factors that permit such reorganizations are poorly understood. To address this problem, we have explored the rapid drainage reorganization that affected the Cahabon River in Guatemala during the Quaternary. Sediment-provenance analysis, field mapping, and electrical resistivity tomography (ERT) imaging are used to reconstruct the geometry of the valley before the river was captured. Dating of the abandoned valley sediments by the Be-10-Al-26 burial method and geomagnetic polarity analysis allow us to determine the age of the capture events and then to quantify several processes, such as the rate of tectonic deformation of the paleovalley, the rate of propagation of post-capture drainage reversal, and the rate at which canyons that formed at the capture sites have propagated along the paleovalley. Transtensional faulting started 1 to 3 million years ago, produced ground tilting and ground faulting along the Cahabon River, and thus generated differential uplift rate of 0.3 +/- 0.1 up to 0.7 +/- 0.4 mm . y(-1) along the river's course. The river responded to faulting by incising the areas of relative uplift and depositing a few tens of meters of sediment above the areas of relative subsidence. Then, the river experienced two captures and one avulsion between 700 ky and 100 ky. The captures breached high-standing ridges that separate the Cahabon River from its captors. Captures occurred at specific points where ridges are made permeable by fault damage zones and/or soluble rocks. Groundwater flow from the Cahabon River down to its captors likely increased the erosive power of the captors thus promoting focused erosion of the ridges. Valley-fill formation and capture occurred in close temporal succession, suggesting a genetic link between the two. We suggest that the aquifers accumulated within the valley-fills, increased the head along the subterraneous system connecting the Cahabon River to its captors, and promoted their development. Upon capture, the breached valley experienced widespread drainage reversal toward the capture sites. We attribute the generalized reversal to combined effects of groundwater sapping in the valley-fill, axial drainage obstruction by lateral fans, and tectonic tilting. Drainage reversal increased the size of the captured areas by a factor of 4 to 6. At the capture sites, 500 m deep canyons have been incised into the bedrock and are propagating upstream at a rate of 3 to 11 mm . y(-1) deepening at a rate of 0.7 to 1 5 mm . y(-1). At this rate, 1 to 2 million years will be necessary for headward erosion to completely erase the topographic expression of the paleovalley. It is concluded that the rapid reorganization of this drainage system was made possible by the way the river adjusted to the new tectonic strain field, which involved transient sedimentation along the river's course. If the river had escaped its early reorganization and had been given the time necessary to reach a new dynamic equilibrium, then the transient conditions that promoted capture would have vanished and its vulnerability to capture would have been strongly reduced.
Resumo:
Risky single-occasion drinking (RSOD) is more common in late adolescence and early adulthood (approximately between the ages of 16 and 30) than in any other period in life. This is also the age when young people in Switzerland and many other European countries are legally allowed to buy and drink alcohol, but they usually do not yet have adult responsibilities. This paper reviews evidence from the international literature and provides examples of studies conducted in Switzerland demonstrating that (a) RSOD is by far most prevalent on Saturday evenings followed by Friday evenings, usually because young people go out and do not have any work or study responsibilities the next day; (b) RSOD results from drinking in private before going out ("predrinking") and accelerating the pace of drinking (i.e. increasing the number of drinks consumed per hour); (c) RSOD is often not accidental but purposeful,. to seek excitement, to have fun and to feel the effects of alcohol; (d) RSOD occurs predominantly outside the home, mostly in bars, pubs, discos or at special events and festivals; (e) RSOD often results in intended and unintended injuries and other acute consequences, which are leading risk factors for mortality and morbidity in this age group. Effective prevention strategies should include attempts to reduce opportunities to engage in heavy drinking as well as strategies to reduce its harmful consequences.
Resumo:
AIMS: To evaluate the effect of a structured preoperative preparation on child and parent state anxiety, child behavioural change and parent satisfaction. BACKGROUND: It is estimated that around 50-70% of hospitalised children experience severe anxiety and distress prior to surgery. Children who are highly anxious and distressed preoperatively are likely to be distressed on awakening and have negative postoperative behaviour. Although education before surgery has been found to be useful mostly in North America, the effectiveness of preoperative preparation programme adapted to the Australian context remains to be tested. DESIGN: This single-blind randomised controlled study was conducted at a tertiary referral hospital for children in Western Australia. METHODS: Following ethics approval and parental consent, 73 children and one of their carers (usually a parent) were randomly assigned into two groups. The control group had standard practice with no specific preoperative education and the experimental group received a preoperative preparation, including a photo file, demonstration of equipment using a role-modelling approach and a tour. RESULTS: The preoperative preparation reduced parent state anxiety significantly (-2·32, CI -4·06 to -0·56, p = 0·009), but not child anxiety (-0·59, CI -1·23 to 0·06, p = 0·07). There was no significant difference in child postoperative behaviour or parent satisfaction between the groups. There was a significant two-point pain score reduction in the preoperative preparation group, when compared with the control group median 2 (IQR 5) and 4 (IQR 4), respectively (p = 0·001).¦CONCLUSIONS: Preoperative preparation was more efficient on parent than child. Although the preoperative preparation had limited effect on child anxiety, it permitted to decrease pain experience in the postoperative period.¦RELEVANCE TO CLINICAL PRACTICE: Parents should be actively involved in their child preoperative preparation.
Resumo:
OBJECTIVES: To evaluate the influence of genetic polymorphisms on the susceptibility to Candida colonization and intra-abdominal candidiasis, a blood culture-negative life-threatening infection in high-risk surgical ICU patients. DESIGN: Prospective observational cohort study. SETTING: Surgical ICUs from two University hospitals of the Fungal Infection Network of Switzerland. PATIENTS: Eighty-nine patients at high risk for intra-abdominal candidiasis (68 with recurrent gastrointestinal perforation and 21 with acute necrotizing pancreatitis). MEASUREMENTS AND MAIN RESULTS: Eighteen single-nucleotide polymorphisms in 16 genes previously associated with development of fungal infections were analyzed from patient's DNA by using an Illumina Veracode genotyping platform. Candida colonization was defined by recovery of Candida species from at least one nonsterile site by twice weekly monitoring of cultures from oropharynx, stools, urine, skin, and/or respiratory tract. A corrected colonization index greater than or equal to 0.4 defined "heavy" colonization. Intra-abdominal candidiasis was defined by the presence of clinical symptoms and signs of peritonitis or intra-abdominal abscess and isolation of Candida species either in pure or mixed culture from intraoperatively collected abdominal samples. Single-nucleotide polymorphisms in three innate immune genes were associated with development of a Candida corrected colonization index greater than or equal to 0.4 (Toll-like receptor rs4986790, hazard ratio = 3.39; 95% CI, 1.45-7.93; p = 0.005) or occurrence of intra-abdominal candidiasis (tumor necrosis factor-α rs1800629, hazard ratio = 4.31; 95% CI, 1.85-10.1; p= 0.0007; β-defensin 1 rs1800972, hazard ratio = 3.21; 95% CI, 1.36-7.59; p = 0.008). CONCLUSION: We report a strong association between the promoter rs1800629 single-nucleotide polymorphism in tumor necrosis factor-α and an increased susceptibility to intra-abdominal candidiasis in a homogenous prospective cohort of high-risk surgical ICU patients. This finding highlights the relevance of the tumor necrosis factor-α functional polymorphism in immune response to fungal pathogens. Immunogenetic profiling in patients at clinical high risk followed by targeted antifungal interventions may improve the prevention or preemptive management of this life-threatening infection.
Resumo:
Purpose: To assess the outcome in patients with olfactory neuroblastoma (ONB). Methods and Materials: Seventy-seven patients treated for nonmetastatic ONB between 1971 and 2004 were included. According to Kadish classification, there were 11 patients with Stage A, 29 with Stage B, and 37 with Stage C. T-classification included 9 patients with T1, 26 with T2, 16 with T3, 15 with T4a, and 11 with T4b tumors. Sixty-eight patients presented with N0 (88%) disease. Results: Most of the patients (n = 56, 73 %) benefited from surgery (S), and total excision was possible in 44 patients (R0 in 32, R1 in 13, R2 in 11). All but five patients benefited from RT, and chemotherapy was given in 21(27%). Median follow-up period was 72 months (range, 6-315). The 5-year overall survival (OS), disease-free survival (DES), locoregional control, and local control were 64%, 57%, 62%, and 70%, respectively. In univariate analyses, favorable factors were Kadish A or B disease, T1 T3 tumors, no nodal involvement, curative surgery, R0/R1 resection, and RT-dose 54 Gy or higher. Multivariate analysis revealed that the best independent factors predicting the outcome were T1 T3, N0, R0/R1 resection, and total RT dose (54 Gy or higher). Conclusion: In this multicenter retrospective study, patients with ONB treated with R0 or R1 surgical resection followed by at least 54-Gy postoperative RT had the best outcome. Novel strategies including concomitant chemotherapy and/or higher dose RT should be prospectively investigated in this rare disease for which local failure remains a problem.
Resumo:
BACKGROUND: Refinements in stent design affecting strut thickness, surface polymer, and drug release have improved clinical outcomes of drug-eluting stents. We aimed to compare the safety and efficacy of a novel, ultrathin strut cobalt-chromium stent releasing sirolimus from a biodegradable polymer with a thin strut durable polymer everolimus-eluting stent. METHODS: We did a randomised, single-blind, non-inferiority trial with minimum exclusion criteria at nine hospitals in Switzerland. We randomly assigned (1:1) patients aged 18 years or older with chronic stable coronary artery disease or acute coronary syndromes undergoing percutaneous coronary intervention to treatment with biodegradable polymer sirolimus-eluting stents or durable polymer everolimus-eluting stents. Randomisation was via a central web-based system and stratified by centre and presence of ST segment elevation myocardial infarction. Patients and outcome assessors were masked to treatment allocation, but treating physicians were not. The primary endpoint, target lesion failure, was a composite of cardiac death, target vessel myocardial infarction, and clinically-indicated target lesion revascularisation at 12 months. A margin of 3·5% was defined for non-inferiority of the biodegradable polymer sirolimus-eluting stent compared with the durable polymer everolimus-eluting stent. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT01443104. FINDINGS: Between Feb 24, 2012, and May 22, 2013, we randomly assigned 2119 patients with 3139 lesions to treatment with sirolimus-eluting stents (1063 patients, 1594 lesions) or everolimus-eluting stents (1056 patients, 1545 lesions). 407 (19%) patients presented with ST-segment elevation myocardial infarction. Target lesion failure with biodegradable polymer sirolimus-eluting stents (69 cases; 6·5%) was non-inferior to durable polymer everolimus-eluting stents (70 cases; 6·6%) at 12 months (absolute risk difference -0·14%, upper limit of one-sided 95% CI 1·97%, p for non-inferiority <0·0004). No significant differences were noted in rates of definite stent thrombosis (9 [0·9%] vs 4 [0·4%], rate ratio [RR] 2·26, 95% CI 0·70-7·33, p=0·16). In pre-specified stratified analyses of the primary endpoint, biodegradable polymer sirolimus-eluting stents were associated with improved outcome compared with durable polymer everolimus-eluting stents in the subgroup of patients with ST-segment elevation myocardial infarction (7 [3·3%] vs 17 [8·7%], RR 0·38, 95% CI 0·16-0·91, p=0·024, p for interaction=0·014). INTERPRETATION: In a patient population with minimum exclusion criteria and high adherence to dual antiplatelet therapy, biodegradable polymer sirolimus-eluting stents were non-inferior to durable polymer everolimus-eluting stents for the combined safety and efficacy outcome target lesion failure at 12 months. The noted benefit in the subgroup of patients with ST-segment elevation myocardial infarction needs further study. FUNDING: Clinical Trials Unit, University of Bern, and Biotronik, Bülach, Switzerland.
Resumo:
ObjectiveCandidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.Research Design and MethodsBy integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS).Results273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.ConclusionsUsing a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.
Resumo:
Abstract : The human body is composed of a huge number of cells acting together in a concerted manner. The current understanding is that proteins perform most of the necessary activities in keeping a cell alive. The DNA, on the other hand, stores the information on how to produce the different proteins in the genome. Regulating gene transcription is the first important step that can thus affect the life of a cell, modify its functions and its responses to the environment. Regulation is a complex operation that involves specialized proteins, the transcription factors. Transcription factors (TFs) can bind to DNA and activate the processes leading to the expression of genes into new proteins. Errors in this process may lead to diseases. In particular, some transcription factors have been associated with a lethal pathological state, commonly known as cancer, associated with uncontrolled cellular proliferation, invasiveness of healthy tissues and abnormal responses to stimuli. Understanding cancer-related regulatory programs is a difficult task, often involving several TFs interacting together and influencing each other's activity. This Thesis presents new computational methodologies to study gene regulation. In addition we present applications of our methods to the understanding of cancer-related regulatory programs. The understanding of transcriptional regulation is a major challenge. We address this difficult question combining computational approaches with large collections of heterogeneous experimental data. In detail, we design signal processing tools to recover transcription factors binding sites on the DNA from genome-wide surveys like chromatin immunoprecipitation assays on tiling arrays (ChIP-chip). We then use the localization about the binding of TFs to explain expression levels of regulated genes. In this way we identify a regulatory synergy between two TFs, the oncogene C-MYC and SP1. C-MYC and SP1 bind preferentially at promoters and when SP1 binds next to C-NIYC on the DNA, the nearby gene is strongly expressed. The association between the two TFs at promoters is reflected by the binding sites conservation across mammals, by the permissive underlying chromatin states 'it represents an important control mechanism involved in cellular proliferation, thereby involved in cancer. Secondly, we identify the characteristics of TF estrogen receptor alpha (hERa) target genes and we study the influence of hERa in regulating transcription. hERa, upon hormone estrogen signaling, binds to DNA to regulate transcription of its targets in concert with its co-factors. To overcome the scarce experimental data about the binding sites of other TFs that may interact with hERa, we conduct in silico analysis of the sequences underlying the ChIP sites using the collection of position weight matrices (PWMs) of hERa partners, TFs FOXA1 and SP1. We combine ChIP-chip and ChIP-paired-end-diTags (ChIP-pet) data about hERa binding on DNA with the sequence information to explain gene expression levels in a large collection of cancer tissue samples and also on studies about the response of cells to estrogen. We confirm that hERa binding sites are distributed anywhere on the genome. However, we distinguish between binding sites near promoters and binding sites along the transcripts. The first group shows weak binding of hERa and high occurrence of SP1 motifs, in particular near estrogen responsive genes. The second group shows strong binding of hERa and significant correlation between the number of binding sites along a gene and the strength of gene induction in presence of estrogen. Some binding sites of the second group also show presence of FOXA1, but the role of this TF still needs to be investigated. Different mechanisms have been proposed to explain hERa-mediated induction of gene expression. Our work supports the model of hERa activating gene expression from distal binding sites by interacting with promoter bound TFs, like SP1. hERa has been associated with survival rates of breast cancer patients, though explanatory models are still incomplete: this result is important to better understand how hERa can control gene expression. Thirdly, we address the difficult question of regulatory network inference. We tackle this problem analyzing time-series of biological measurements such as quantification of mRNA levels or protein concentrations. Our approach uses the well-established penalized linear regression models where we impose sparseness on the connectivity of the regulatory network. We extend this method enforcing the coherence of the regulatory dependencies: a TF must coherently behave as an activator, or a repressor on all its targets. This requirement is implemented as constraints on the signs of the regressed coefficients in the penalized linear regression model. Our approach is better at reconstructing meaningful biological networks than previous methods based on penalized regression. The method is tested on the DREAM2 challenge of reconstructing a five-genes/TFs regulatory network obtaining the best performance in the "undirected signed excitatory" category. Thus, these bioinformatics methods, which are reliable, interpretable and fast enough to cover large biological dataset, have enabled us to better understand gene regulation in humans.