243 resultados para Short Loadlength, Fast Algorithms
Resumo:
INTRODUCTION: The risk that hip preserving surgery may negatively influence the performance and outcome of subsequent total hip replacement (THR) remains a concern. The aim of this study was to identify any negative impact of previous hip arthroscopy on THR. METHODS: Out of 1271 consecutive patients who underwent primary THR between 2005 and 2009, 18 had previously undergone ipsilateral hip arthroscopy. This study group (STG) was compared with two control groups (CG, same approach, identical implants; MCG, paired group matched for age, BMI and Charnley categories). Operative time, blood loss, evidence of heterotopic bone and implant loosening at follow-up were compared between the STG and the MCG. Follow-up WOMAC were compared between the three groups. RESULTS: Blood loss was not found to be significantly different between the STG and MCG. The operative time was significantly less (p < 0.001) in the STG. There was no significant difference in follow-up WOMAC between the groups. No implant related complications were noted in follow-up radiographs. Two minor complications were documented for the STG and three for the MCG. CONCLUSION: We have found no evidence that previous hip arthroscopy negatively influences the performance or short-term clinical outcome of THR.
Resumo:
Staphylococcus aureus is recognized as one of the major human pathogens and is by far one of the most common nosocomial organisms. The genetic basis for the emergence of highly epidemic strains remains mysterious. Studying the microevolution of the different clones of S. aureus is essential for identifying the forces driving pathogen emergence and spread. The aim of the present study was to determine the genetic changes characterizing a lineage belonging to the South German clone (ST228) that spread over ten years in a tertiary care hospital in Switzerland. For this reason, we compared the whole genome of eight isolates recovered between 2001 and 2008 at the Lausanne hospital. The genetic comparison of these isolates revealed that their genomes are extremely closely related. Yet, a few more important genetic changes, such as the replacement of a plasmid, the loss of large fragments of DNA, or the insertion of transposases, were observed. These transfers of mobile genetic elements shaped the evolution of the ST228 lineage that spread within the Lausanne hospital. Nevertheless, although the strains analyzed differed in their dynamics, we have not been able to link a particular genetic element with spreading success. Finally, the present study showed that new sequencing technologies improve considerably the quality and quantity of information obtained for a single strain; but this information is still difficult to interpret and important investments are required for the technology to become accessible for routine investigations.
Resumo:
It is established that the ratio between step length (SL) and step frequency (SF) is constant over a large range of walking speed. However, few data are available about the spontaneous variability of this ratio during unconstrained outdoor walking, in particular over a sufficient number of steps. The purpose of the present study was to assess the inter- and intra-subject variability of spatio-temporal gait characteristics [SL, SF and walk ratio (WR=SL/SF)] while walking at different freely selected speeds. Twelve healthy subjects walked three times along a 100-m athletic track at: (1). a slower than preferred speed, (2). preferred speed and (3). a faster than preferred speed. Two professional GPS receivers providing 3D positions assessed the walking speed and SF with high precision (less than 0.5% error). Intra-subject variability was calculated as the variation among eight consecutive 5-s samples. WR was found to be constant at preferred and fast speeds [0.41 (0.04) m.s and 0.41 (0.05) m.s respectively] but was higher at slow speeds [0.44 (0.05) m.s]. In other words, between slow and preferred speed, the speed increase was mediated more by a change in SF than SL. The intra-subject variability of WR was low under preferred [CV, coefficient of variation = 1.9 (0.6)%] and fast [CV=1.8 (0.5)%] speed conditions, but higher under low speed condition [CV=4.1 (1.5)%]. On the other hand, the inter-subject variability of WR was 11%, 10% and 12% at slow, preferred and fast walking speeds respectively. It is concluded that the GPS method is able to capture basic gait parameters over a short period of time (5 s). A specific gait pattern for slow walking was observed. Furthermore, it seems that the walking patterns in free-living conditions exhibit low intra-individual variability, but that there is substantial variability between subjects.
Resumo:
From 2007 to 2010, the emergency-crisis unit of the Couple and Family Consultation Unit -UCCF (West Psychiatric Service, Prangins Psychiatric Hospital, Psychiatric Department of CHUV) has carried out a research about the relevance and usefulness of emergency-crisis, systemic-oriented treatments, for deeply distressed couples and families. Besides epidemiologic data, we present results demonstrating the efficiency of those treatments, both at short-term and at a one year's range. The global impact of such treatments in terms of public health, but also economical issues, make us believe that they should be fully included in the new trend of psychiatric ambulatory care, into the social net.
Resumo:
Recently, the spin-echo full-intensity acquired localized (SPECIAL) spectroscopy technique was proposed to unite the advantages of short TEs on the order of milliseconds (ms) with full sensitivity and applied to in vivo rat brain. In the present study, SPECIAL was adapted and optimized for use on a clinical platform at 3T and 7T by combining interleaved water suppression (WS) and outer volume saturation (OVS), optimized sequence timing, and improved shimming using FASTMAP. High-quality single voxel spectra of human brain were acquired at TEs below or equal to 6 ms on a clinical 3T and 7T system for six volunteers. Narrow linewidths (6.6 +/- 0.6 Hz at 3T and 12.1 +/- 1.0 Hz at 7T for water) and the high signal-to-noise ratio (SNR) of the artifact-free spectra enabled the quantification of a neurochemical profile consisting of 18 metabolites with Cramér-Rao lower bounds (CRLBs) below 20% at both field strengths. The enhanced sensitivity and increased spectral resolution at 7T compared to 3T allowed a two-fold reduction in scan time, an increased precision of quantification for 12 metabolites, and the additional quantification of lactate with CRLB below 20%. Improved sensitivity at 7T was also demonstrated by a 1.7-fold increase in average SNR (= peak height/root mean square [RMS]-of-noise) per unit-time.
Resumo:
The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.
Resumo:
Aim We test for the congruence between allele-based range boundaries (break zones) in silicicolous alpine plants and species-based break zones in the silicicolous flora of the European Alps. We also ask whether such break zones coincide with areas of large elevational variation.Location The European Alps.Methods On a regular grid laid across the entire Alps, we determined areas of allele- and species-based break zones using respective clustering algorithms, identifying discontinuities in cluster distributions (breaks), and quantifying integrated break densities (break zones). Discontinuities were identified based on the intra-specific genetic variation of 12 species and on the floristic distribution data from 239 species, respectively. Coincidence between the two types of break zones was tested using Spearman's correlation. Break zone densities were also regressed on topographical complexity to test for the effect of elevational variation.Results We found that two main break zones in the distribution of alleles and species were significantly correlated. Furthermore, we show that these break zones are in topographically complex regions, characterized by massive elevational ranges owing to high mountains and deep glacial valleys. We detected a third break zone in the distribution of species in the eastern Alps, which is not correlated with topographic complexity, and which is also not evident from allelic distribution patterns. Species with the potential for long-distance dispersal tended to show larger distribution ranges than short-distance dispersers.Main conclusions We suggest that the history of Pleistocene glaciations is the main driver of the congruence between allele-based and species-based distribution patterns, because occurrences of both species and alleles were subject to the same processes (such as extinction, migration and drift) that shaped the distributions of species and genetic lineages. Large elevational ranges have had a profound effect as a dispersal barrier for alleles during post-glacial immigration. Because plant species, unlike alleles, cannot spread via pollen but only via seed, and thus disperse less effectively, we conclude that species break zones are maintained over longer time spans and reflect more ancient patterns than allele break zones.Conny Thiel-Egenter and Nadir Alvarez contributed equally to this paper and are considered joint first authors.
Resumo:
High-field (>or=3 T) cardiac MRI is challenged by inhomogeneities of both the static magnetic field (B(0)) and the transmit radiofrequency field (B(1)+). The inhomogeneous B fields not only demand improved shimming methods but also impede the correct determination of the zero-order terms, i.e., the local resonance frequency f(0) and the radiofrequency power to generate the intended local B(1)+ field. In this work, dual echo time B(0)-map and dual flip angle B(1)+-map acquisition methods are combined to acquire multislice B(0)- and B(1)+-maps simultaneously covering the entire heart in a single breath hold of 18 heartbeats. A previously proposed excitation pulse shape dependent slice profile correction is tested and applied to reduce systematic errors of the multislice B(1)+-map. Localized higher-order shim correction values including the zero-order terms for frequency f(0) and radiofrequency power can be determined based on the acquired B(0)- and B(1)+-maps. This method has been tested in 7 healthy adult human subjects at 3 T and improved the B(0) field homogeneity (standard deviation) from 60 Hz to 35 Hz and the average B(1)+ field from 77% to 100% of the desired B(1)+ field when compared to more commonly used preparation methods.
Resumo:
BACKGROUND: The comparison of complete genomes has revealed surprisingly large numbers of conserved non-protein-coding (CNC) DNA regions. However, the biological function of CNC remains elusive. CNC differ in two aspects from conserved protein-coding regions. They are not conserved across phylum boundaries, and they do not contain readily detectable sub-domains. Here we characterize the persistence length and time of CNC and conserved protein-coding regions in the vertebrate and insect lineages. RESULTS: The persistence length is the length of a genome region over which a certain level of sequence identity is consistently maintained. The persistence time is the evolutionary period during which a conserved region evolves under the same selective constraints.Our main findings are: (i) Insect genomes contain 1.60 times less conserved information than vertebrates; (ii) Vertebrate CNC have a higher persistence length than conserved coding regions or insect CNC; (iii) CNC have shorter persistence times as compared to conserved coding regions in both lineages. CONCLUSION: Higher persistence length of vertebrate CNC indicates that the conserved information in vertebrates and insects is organized in functional elements of different lengths. These findings might be related to the higher morphological complexity of vertebrates and give clues about the structure of active CNC elements.Shorter persistence time might explain the previously puzzling observations of highly conserved CNC within each phylum, and of a lack of conservation between phyla. It suggests that CNC divergence might be a key factor in vertebrate evolution. Further evolutionary studies will help to relate individual CNC to specific developmental processes.
Resumo:
Solid phase microextraction (SPME) has been widely used for many years in various applications, such as environmental and water samples, food and fragrance analysis, or biological fluids. The aim of this study was to suggest the SPME method as an alternative to conventional techniques used in the evaluation of worker exposure to benzene, toluene, ethylbenzene, and xylene (BTEX). Polymethylsiloxane-carboxen (PDMS/CAR) showed as the most effective stationary phase material for sorbing BTEX among other materials (polyacrylate, PDMS, PDMS/divinylbenzene, Carbowax/divinylbenzene). Various experimental conditions were studied to apply SPME to BTEX quantitation in field situations. The uptake rate of the selected fiber (75 microm PDMS/CAR) was determined for each analyte at various concentrations, relative humidities, and airflow velocities from static (calm air) to dynamic (> 200 cm/s) conditions. The SPME method also was compared with the National Institute of Occupational Safety and Health method 1501. Unlike the latter, the SPME approach fulfills the new requirement for the threshold limit value-short term exposure limit (TLV-STEL) of 2.5 ppm for benzene (8 mg/m(3))
Resumo:
The role of the Saccharomyces cerevisae peroxisomal acyl-coenzyme A (acyl-CoA) thioesterase (Pte1p) in fatty acid beta-oxidation was studied by analyzing the in vitro kinetic activity of the purified protein as well as by measuring the carbon flux through the beta-oxidation cycle in vivo using the synthesis of peroxisomal polyhydroxyalkanoate (PHA) from the polymerization of the 3-hydroxyacyl-CoAs as a marker. The amount of PHA synthesized from the degradation of 10-cis-heptadecenoic, tridecanoic, undecanoic, or nonanoic acids was equivalent or slightly reduced in the pte1Delta strain compared with wild type. In contrast, a strong reduction in PHA synthesized from heptanoic acid and 8-methyl-nonanoic acid was observed for the pte1Delta strain compared with wild type. The poor catabolism of 8-methyl-nonanoic acid via beta-oxidation in pte1Delta negatively impacted the degradation of 10-cis-heptadecenoic acid and reduced the ability of the cells to efficiently grow in medium containing such fatty acids. An increase in the proportion of the short chain 3-hydroxyacid monomers was observed in PHA synthesized in pte1Delta cells grown on a variety of fatty acids, indicating a reduction in the metabolism of short chain acyl-CoAs in these cells. A purified histidine-tagged Pte1p showed high activity toward short and medium chain length acyl-CoAs, including butyryl-CoA, decanoyl-CoA and 8-methyl-nonanoyl-CoA. The kinetic parameters measured for the purified Pte1p fit well with the implication of this enzyme in the efficient metabolism of short straight and branched chain fatty acyl-CoAs by the beta-oxidation cycle.
Resumo:
QUESTION UNDER STUDY: Hospitals transferring patients retain responsibility until admission to the new health care facility. We define safe transfer conditions, based on appropriate risk assessment, and evaluate the impact of this strategy as implemented at our institution. METHODS: An algorithm defining transfer categories according to destination, equipment monitoring, and medication was developed and tested prospectively over 6 months. Conformity with algorithm criteria was assessed for every transfer and transfer category. After introduction of a transfer coordination centre with transfer nurses, the algorithm was implemented and the same survey was carried out over 1 year. RESULTS: Over the whole study period, the number of transfers increased by 40%, chiefly by ambulance from the emergency department to other hospitals and private clinics. Transfers to rehabilitation centres and nursing homes were reassigned to conventional vehicles. The percentage of patients requiring equipment during transfer, such as an intravenous line, decreased from 34% to 15%, while oxygen or i.v. drug requirement remained stable. The percentage of transfers considered below theoretical safety decreased from 6% to 4%, while 20% of transfers were considered safer than necessary. A substantial number of planned transfers could be "downgraded" by mutual agreement to a lower degree of supervision, and the system was stable on a short-term basis. CONCLUSION: A coordinated transfer system based on an algorithm determining transfer categories, developed on the basis of simple but valid medical and nursing criteria, reduced unnecessary ambulance transfers and treatment during transfer, and increased adequate supervision.