43 resultados para SINGLE-QUANTUM-WELL
Resumo:
BACKGROUND: Mantle cell lymphoma accounts for 6% of all B-cell lymphomas and is generally incurable. It is characterized by the translocation t(11;14) leading to cyclin D1 over-expression. Cyclin D1 is downstream of the mammalian target of rapamycin threonine kinase and can be effectively blocked by mammalian target of rapamycin inhibitors. We set out to examine the single agent activity of the orally available mammalian target of rapamycin inhibitor everolimus in a prospective, multicenter trial in patients with relapsed or refractory mantle cell lymphoma (NCT00516412). DESIGN AND METHODS: Eligible patients who had received a maximum of three prior lines of chemotherapy were given everolimus 10 mg for 28 days (one cycle) for a total of six cycles or until disease progression. The primary endpoint was the best objective response. Adverse reactions, progression-free survival and molecular response were secondary endpoints. RESULTS: Thirty-six patients (35 evaluable) were enrolled and treatment was generally well tolerated with Common Terminology Criteria grade ≥ 3 adverse events (>5%) including anemia (11%), thrombocytopenia (11%) and neutropenia (8%). The overall response rate was 20% (95% CI: 8-37%) with two complete remissions and five partial responses; 49% of the patients had stable disease. At a median follow-up of 6 months, the median progression-free survival was 5.5 months (95% CI: 2.8-8.2) overall and 17.0 (6.4-23.3) months for 18 patients who received six or more cycles of treatment. Three patients achieved a lasting complete molecular response, as assessed by polymerase chain reaction analysis of peripheral blood. CONCLUSIONS: Everolimus as a single agent is well tolerated and has anti-lymphoma activity in relapsed or refractory mantle cell lymphoma. Further studies of everolimus in combination with chemotherapy or as a single agent for maintenance treatment are warranted.
Resumo:
High performance liquid chromatography (HPLC) is the reference method for measuring concentrations of antimicrobials in blood. This technique requires careful sample preparation. Protocols using organic solvents and/or solid extraction phases are time consuming and entail several manipulations, which can lead to partial loss of the determined compound and increased analytical variability. Moreover, to obtain sufficient material for analysis, at least 1 ml of plasma is required. This constraint makes it difficult to determine drug levels when blood sample volumes are limited. However, drugs with low plasma-protein binding can be reliably extracted from plasma by ultra-filtration with a minimal loss due to the protein-bound fraction. This study validated a single-step ultra-filtration method for extracting fluconazole (FLC), a first-line antifungal agent with a weak plasma-protein binding, from plasma to determine its concentration by HPLC. Spiked FLC standards and unknowns were prepared in human and rat plasma. Samples (240 microl) were transferred into disposable microtube filtration units containing cellulose or polysulfone filters with a 5 kDa cut-off. After centrifugation for 60 min at 15000g, FLC concentrations were measured by direct injection of the filtrate into the HPLC. Using cellulose filters, low molecular weight proteins were eluted early in the chromatogram and well separated from FLC that eluted at 8.40 min as a sharp single peak. In contrast, with polysulfone filters several additional peaks interfering with the FLC peak were observed. Moreover, the FLC recovery using cellulose filters compared to polysulfone filters was higher and had a better reproducibility. Cellulose filters were therefore used for the subsequent validation procedure. The quantification limit was 0.195 mgl(-1). Standard curves with a quadratic regression coefficient > or = 0.9999 were obtained in the concentration range of 0.195-100 mgl(-1). The inter and intra-run accuracies and precisions over the clinically relevant concentration range, 1.875-60 mgl(-1), fell well within the +/-15% variation recommended by the current guidelines for the validation of analytical methods. Furthermore, no analytical interference was observed with commonly used antibiotics, antifungals, antivirals and immunosuppressive agents. Ultra-filtration of plasma with cellulose filters permits the extraction of FLC from small volumes (240 microl). The determination of FLC concentrations by HPLC after this single-step procedure is selective, precise and accurate.
Resumo:
Objective: To demonstrate our institutional experience in the treatment ofdiffuse intrinsic pontine glioma (DIPG) with an hypofractionated external beam radiotherapy schedule.Materials and Methods: Between April 1996 and January 2004, 22 patients, ages 2.9-12.5 years, with newly diagnosed DIPG were treated by hypofractionated radiation therapy delivering a total dose of 45 Gy in daily fraction of 3 Gy, given over 3 weeks. No other treatment was applied concomittently.Results: Fourteen of the 22 patients received the prescribed dose of 45 Gy in 15 fractions of 3 Gy, two patients received a total dose of 60 and 45 Gy with a combination of two different beams (photons and neutrons), in 5 cases the daily fraction was modified to 2 Gy because of bad tolerance and one patient died due to serious intracranial hypertension after 2 fractions of 3 Gy and one of 2 Gy. Fourteen patients of 22 patients/of the total showed a clinical improvement, usually starting in the second week of treatment. No grade 3 or 4 acute toxicity from radiotherapy was observed. No treatment interruption was needed. In six patients, steroids could be discontinued within one month after the end of radiotherapy. The median time to progression and the median overall survival were 5.7 months and 7.6 months, respectively.Conclusion: External radiotherapy with a radical hypofractionated regimen is feasible and well tolerated in children with newly diagnosed DIPG. This regimen does not seem however to change the overall survival in this setting. It could represent an alternative option of short duration to more protracted regimens.
Resumo:
BACKGROUND: Data suggest that esomeprazole decreases gastric secretion. AIMS: To assess the effect of a single i.v. esomeprazole dose on gastric secretion volume 3 h after drug administration, as a primary endpoint, and to evaluate, as secondary endpoints, the reduction 1 and 5 h after dosing; time when the gastric pH was <2.5 and esomeprazole's safety. METHODS: In all, 23 healthy Helicobacter pylori-negative volunteers (10 men, 13 women, mean age 28.2 +/- 6) participated in this single-centre, randomized, double-blind, placebo-controlled, 2-way, single-dose cross-over study. In different sessions, volunteers received i.v. either esomeprazole 40 mg or placebo. An inserted double-lumen nasogastric tube perfused and aspirated gastric liquid. Mechanical fractioned aspiration measured secretion volume; aliquot spectrophotometry assessed gastric secretion volume lost to the duodenum. RESULTS: Three hours post-i.v. esomeprazole, average gastric secretion decreased by 77.6% (vs. baseline) compared to placebo. Values 1 and 5 h after dosing were 73.5% and 74.5%. Five hours after esomeprazole, the gastric pH was <2.5 3.9% of the time and 73.3% after placebo (P < 0.002). Esomeprazole was well-tolerated. No serious adverse events occurred. CONCLUSIONS: Intravenous esomeprazole decreases gastric secretions. The potential clinical impact in averting bronchoaspiration during anaesthesia induction and in intensive care patients should be investigated in further studies.
Resumo:
Single-trial analysis of human electroencephalography (EEG) has been recently proposed for better understanding the contribution of individual subjects to a group-analysis effect as well as for investigating single-subject mechanisms. Independent Component Analysis (ICA) has been repeatedly applied to concatenated single-trial responses and at a single-subject level in order to extract those components that resemble activities of interest. More recently we have proposed a single-trial method based on topographic maps that determines which voltage configurations are reliably observed at the event-related potential (ERP) level taking advantage of repetitions across trials. Here, we investigated the correspondence between the maps obtained by ICA versus the topographies that we obtained by the single-trial clustering algorithm that best explained the variance of the ERP. To do this, we used exemplar data provided from the EEGLAB website that are based on a dataset from a visual target detection task. We show there to be robust correspondence both at the level of the activation time courses and at the level of voltage configurations of a subset of relevant maps. We additionally show the estimated inverse solution (based on low-resolution electromagnetic tomography) of two corresponding maps occurring at approximately 300 ms post-stimulus onset, as estimated by the two aforementioned approaches. The spatial distribution of the estimated sources significantly correlated and had in common a right parietal activation within Brodmann's Area (BA) 40. Despite their differences in terms of theoretical bases, the consistency between the results of these two approaches shows that their underlying assumptions are indeed compatible.
Resumo:
The capabilities of a high-resolution (HR), accurate mass spectrometer (Exactive-MS) operating in full scan MS mode was investigated for the quantitative LC/MS analysis of drugs in patients' plasma samples. A mass resolution of 50,000 (FWHM) at m/z 200 and a mass extracted window of 5 ppm around the theoretical m/z of each analyte were used to construct chromatograms for quantitation. The quantitative performance of the Exactive-MS was compared with that of a triple quadrupole mass spectrometer (TQ-MS), TSQ Quantum Discovery or Quantum Ultra, operating in the conventional selected reaction monitoring (SRM) mode. The study consisted of 17 therapeutic drugs including 8 antifungal agents (anidulafungin, caspofungin, fluconazole, itraconazole, hydroxyitraconazole posaconazole, voriconazole and voriconazole-N-oxide), 4 immunosuppressants (ciclosporine, everolimus, sirolimus and tacrolimus) and 5 protein kinase inhibitors (dasatinib, imatinib, nilotinib, sorafenib and sunitinib). The quantitative results obtained with HR-MS acquisition show comparable detection specificity, assay precision, accuracy, linearity and sensitivity to SRM acquisition. Importantly, HR-MS offers several benefits over TQ-MS technology: absence of SRM optimization, time saving when changing the analysis from one MS to another, more complete information of what is in the samples and easier troubleshooting. Our work demonstrates that U/HPLC coupled to Exactive HR-MS delivers comparable results to TQ-MS in routine quantitative drug analyses. Considering the advantages of HR-MS, these results suggest that, in the near future, there should be a shift in how routine quantitative analyses of small molecules, particularly for therapeutic drugs, are performed.
Resumo:
Correlative fluorescence and electron microscopy has become an indispensible tool for research in cell biology. The integrated Laser and Electron Microscope (iLEM) combines a Fluorescence Microscope (FM) and a Transmission Electron Microscope (TEM) within one set-up. This unique imaging tool allows for rapid identification of a region of interest with the FM, and subsequent high resolution TEM imaging of this area. Sample preparation is one of the major challenges in correlative microscopy of a single specimen; it needs to be apt for both FM and TEM imaging. For iLEM, the performance of the fluorescent probe should not be impaired by the vacuum of the TEM. In this technical note, we have compared the fluorescence intensity of six fluorescent probes in a dry, oxygen free environment relative to their performance in water. We demonstrate that the intensity of some fluorophores is strongly influenced by its surroundings, which should be taken into account in the design of the experiment. Furthermore, a freeze-substitution and Lowicryl resin embedding protocol is described that yields excellent membrane contrast in the TEM but prevents quenching of the fluorescent immuno-labeling. The embedding protocol results in a single specimen preparation procedure that performs well in both FM and TEM. Such procedures are not only essential for the iLEM, but also of great value to other correlative microscopy approaches.
Resumo:
PURPOSE: EOS (EOS imaging S.A, Paris, France) is an x-ray imaging system that uses slot-scanning technology in order to optimize the trade-off between image quality and dose. The goal of this study was to characterize the EOS system in terms of occupational exposure, organ doses to patients as well as image quality for full spine examinations. METHODS: Occupational exposure was determined by measuring the ambient dose equivalents in the radiological room during a standard full spine examination. The patient dosimetry was performed using anthropomorphic phantoms representing an adolescent and a five-year-old child. The organ doses were measured with thermoluminescent detectors and then used to calculate effective doses. Patient exposure with EOS was then compared to dose levels reported for conventional radiological systems. Image quality was assessed in terms of spatial resolution and different noise contributions to evaluate the detector's performances of the system. The spatial-frequency signal transfer efficiency of the imaging system was quantified by the detective quantum efficiency (DQE). RESULTS: The use of a protective apron when the medical staff or parents have to stand near to the cubicle in the radiological room is recommended. The estimated effective dose to patients undergoing a full spine examination with the EOS system was 290μSv for an adult and 200 μSv for a child. MTF and NPS are nonisotropic, with higher values in the scanning direction; they are in addition energy-dependent, but scanning speed independent. The system was shown to be quantum-limited, with a maximum DQE of 13%. The relevance of the DQE for slot-scanning system has been addressed. CONCLUSIONS: As a summary, the estimated effective dose was 290μSv for an adult; the image quality remains comparable to conventional systems.
Resumo:
Multisensory memory traces established via single-trial exposures can impact subsequent visual object recognition. This impact appears to depend on the meaningfulness of the initial multisensory pairing, implying that multisensory exposures establish distinct object representations that are accessible during later unisensory processing. Multisensory contexts may be particularly effective in influencing auditory discrimination, given the purportedly inferior recognition memory in this sensory modality. The possibility of this generalization and the equivalence of effects when memory discrimination was being performed in the visual vs. auditory modality were at the focus of this study. First, we demonstrate that visual object discrimination is affected by the context of prior multisensory encounters, replicating and extending previous findings by controlling for the probability of multisensory contexts during initial as well as repeated object presentations. Second, we provide the first evidence that single-trial multisensory memories impact subsequent auditory object discrimination. Auditory object discrimination was enhanced when initial presentations entailed semantically congruent multisensory pairs and was impaired after semantically incongruent multisensory encounters, compared to sounds that had been encountered only in a unisensory manner. Third, the impact of single-trial multisensory memories upon unisensory object discrimination was greater when the task was performed in the auditory vs. visual modality. Fourth, there was no evidence for correlation between effects of past multisensory experiences on visual and auditory processing, suggestive of largely independent object processing mechanisms between modalities. We discuss these findings in terms of the conceptual short term memory (CSTM) model and predictive coding. Our results suggest differential recruitment and modulation of conceptual memory networks according to the sensory task at hand.
Resumo:
BACKGROUND: Postoperative chemoradiotherapy (CRT) of gastric carcinoma improves survival among high- risk patients. This study was undertaken to analyse long-term survival probability and the impact of certain covariates on the survival outcome in affected individuals. MATERIALS AND METHODS: Between January 2000 and December 2005, 244 patients with gastric cancer underwent adjuvant radiotherapy (RT) in our institution. Data were retrieved retrospectively from patient files and analysed with SPSS version 21.0. RESULTS: A total of 244 cases, with a male to female ratio of 2.2:1, were enrolled in the study. The median age of the patients was 52 years (range, 20-78 years). Surgical margin status was positive or close in 72 (33%) out of 220 patients. Postoperative adjuvant RT dose was 46 Gy. Median follow-up was 99 months (range, 79-132 months) and 23 months (range, 2-155 months) for surviving patients and all patients, respectively. Actuarial overall survival (OS) probability for 1-, 3-, 5- and 10-year was 79%, 37%, 24% and 16%, respectively. Actuarial progression free survival (PFS) probability was 69%, 34%, 23% and 16% in the same consecutive order. AJCC Stage I-II disease, subtotal gastrectomy and adjuvant CRT were significantly associated with improved OS and PFS in multivariate analyses. Surgical margin status or lymph node dissection type were not prognostic for survival. CONCLUSIONS: Postoperative CRT should be considered for all patients with high risk of recurrence after gastrectomy. Beside well-known prognostic factors such as stage, lymph node status and concurrent chemotherapy, the type of gastrectomy was an important prognostic factor in our series. With our findings we add to the discussion on the definition of required surgical margin for subtotal gastrectomy. We consider that our observations in gastric cancer patients in our clinic can be useful in the future randomised trials to point the way to improved outcomes.
Resumo:
BACKGROUND: Recent neuroimaging studies suggest that value-based decision-making may rely on mechanisms of evidence accumulation. However no studies have explicitly investigated the time when single decisions are taken based on such an accumulation process. NEW METHOD: Here, we outline a novel electroencephalography (EEG) decoding technique which is based on accumulating the probability of appearance of prototypical voltage topographies and can be used for predicting subjects' decisions. We use this approach for studying the time-course of single decisions, during a task where subjects were asked to compare reward vs. loss points for accepting or rejecting offers. RESULTS: We show that based on this new method, we can accurately decode decisions for the majority of the subjects. The typical time-period for accurate decoding was modulated by task difficulty on a trial-by-trial basis. Typical latencies of when decisions are made were detected at ∼500ms for 'easy' vs. ∼700ms for 'hard' decisions, well before subjects' response (∼340ms). Importantly, this decision time correlated with the drift rates of a diffusion model, evaluated independently at the behavioral level. COMPARISON WITH EXISTING METHOD(S): We compare the performance of our algorithm with logistic regression and support vector machine and show that we obtain significant results for a higher number of subjects than with these two approaches. We also carry out analyses at the average event-related potential level, for comparison with previous studies on decision-making. CONCLUSIONS: We present a novel approach for studying the timing of value-based decision-making, by accumulating patterns of topographic EEG activity at single-trial level.
Resumo:
Given their high sensitivity and ability to limit the field of view (FOV), surface coils are often used in magnetic resonance spectroscopy (MRS) and imaging (MRI). A major downside of surface coils is their inherent radiofrequency (RF) B1 heterogeneity across the FOV, decreasing with increasing distance from the coil and giving rise to image distortions due to non-uniform spatial responses. A robust way to compensate for B1 inhomogeneities is to employ adiabatic inversion pulses, yet these are not well adapted to all imaging sequences - including to single-shot approaches like echo planar imaging (EPI). Hybrid spatiotemporal encoding (SPEN) sequences relying on frequency-swept pulses provide another ultrafast MRI alternative, that could help solve this problem thanks to their built-in heterogeneous spatial manipulations. This study explores how this intrinsic SPEN-based spatial discrimination, could be used to compensate for the B1 inhomogeneities inherent to surface coils. Experiments carried out in both phantoms and in vivo rat brains demonstrate that, by suitably modulating the amplitude of a SPEN chirp pulse that progressively excites the spins in a direction normal to the coil, it is possible to compensate for the RF transmit inhomogeneities and thus improve sensitivity and image fidelity.
Resumo:
BACKGROUND AND PURPOSE: Medial temporal lobe abnormalities on DWI and functional imaging are occasionally observed in patients with transient global amnesia. We used CTP to study these patients during or briefly after resolution of their amnesic syndrome. MATERIALS AND METHODS: From 2002 onward, patients satisfying clinical criteria for transient global amnesia who underwent CTP were included. Patients with additional clinical features suggesting transient ischemic attack or stroke and those with an ischemic lesion on subsequent DWI were excluded. If deemed necessary by the clinician, DWI was performed within 10 days. RESULTS: Thirty patients with transient global amnesia underwent CTP at a median latency of 5.9 hours (interquartile range, 4.3-9.7 hours) after symptom onset. All findings, except for those in 1 patient, were normal, including those in the 14 patients with well-imaged hippocampi. In the patient with abnormal findings, CTP and PWI showed hypoperfusion in both lentiform nuclei extending into the insulae, with normalization on the repeat CTP 6 days later. In 10 patients, DWI was performed at a median latency of 2 days (interquartile range, 0-9 days). Of these, 2 showed punctate hippocampal lesions, often seen in transient global amnesia. In 2 patients excluded because of mildly atypical transient global amnesia and ischemic lesions on subsequent DWI, acute CTP findings were also normal. CONCLUSIONS: Patients with transient global amnesia had normal CTP findings in the acute phase with the exception of 1 patient with transient hypoperfusion in both basal ganglia. If imaging is performed for typical and atypical transient global amnesia, DWI should be the preferred method.