52 resultados para Reverse recovery effects
Resumo:
AIM: Phylogenetic diversity patterns are increasingly being used to better understand the role of ecological and evolutionary processes in community assembly. Here, we quantify how these patterns are influenced by scale choices in terms of spatial and environmental extent and organismic scales. LOCATION: European Alps. METHODS: We applied 42 sampling strategies differing in their combination of focal scales. For each resulting sub-dataset, we estimated the phylogenetic diversity of the species pools, phylogenetic α-diversities of local communities, and statistics commonly used together with null models in order to infer non-random diversity patterns (i.e. phylogenetic clustering versus over-dispersion). Finally, we studied the effects of scale choices on these measures using regression analyses. RESULTS: Scale choices were decisive for revealing signals in diversity patterns. Notably, changes in focal scales sometimes reversed a pattern of over-dispersion into clustering. Organismic scale had a stronger effect than spatial and environmental extent. However, we did not find general rules for the direction of change from over-dispersion to clustering with changing scales. Importantly, these scale issues had only a weak influence when focusing on regional diversity patterns that change along abiotic gradients. MAIN CONCLUSIONS: Our results call for caution when combining phylogenetic data with distributional data to study how and why communities differ from random expectations of phylogenetic relatedness. These analyses seem to be robust when the focus is on relating community diversity patterns to variation in habitat conditions, such as abiotic gradients. However, if the focus is on identifying relevant assembly rules for local communities, the uncertainty arising from a certain scale choice can be immense. In the latter case, it becomes necessary to test whether emerging patterns are robust to alternative scale choices.
Resumo:
ABSTRACT : Genetic approach in the sleep field is at the beginning of its wide expansion. Transitions between sleep and wakefulness, and the maintenance of these states are driven by complex neurobiologic mechanisms with reciprocal interactions. Impairment in both transitions and maintenance of behavioral states leads to debilitating conditions. The major symptom being excessive daytime sleepiness, characterizing most sleep disorders but also a wide variety of psychiatric and neurologic disorders, as well as the elderly. Until now, most wake-promoting drugs available directly (e.g., amphetamines and possibly modafinil) or indirectly (e.g., caffeine) provokes dopamine release which is believed to influence the abuse potential of these drugs. The effects of genetic components were assessed here, on drug-induced wakefulness and age-related sleep changes in three inbred mouse strains [AKR/J, C57BL/6J, DBA/2J] that differ in their major sleep phenotypes. Three wake-promoting drugs were used; d-amphetamine, a classical stimulant, modafinil, the most widely-prescribed stimulant, and YKP-10A, a novel wake-promoting agent with antidepressant proprieties. Electrical activity (Electroencephalogram) and gene expression of the brain were assessed and indicate a highly genotype-dependant response to wake promotion and subsequent recovery sleep. Aging effects on sleep-wake regulation were also strongly influenced by genetic determinants. By assessing the age-dependant effects at several time points (from 3 months to 2 years old mice), we found a strong genetic effect on vigilance states. These studies demonstrate a critical role for genetic factors neglected till now in the fields of pharmacology and aging effects on vigilance states.
Resumo:
BACKGROUND: High-dose chemotherapy (HDC) followed by autologous stem cell transplantation (ASCT) is used for the treatment of hemato-oncologic malignancies. In this study, we measured the effect of HDC/ASCT on plasma concentrations of antiangiogenic soluble vascular endothelial growth factor receptor 1 (sVEGFR1) and of leukapheresis products (LP) and patient serum on chick chorioallantoic (CAM) angiogenesis. MATERIALS AND METHODS: VEGFR1- and CD34-expressing cells of leukapheresis products were analyzed by flow cytometry. Alternatively spliced isoforms of VEGFR1 mRNA were quantified using reverse transcription PCR. RESULTS: Plasma concentrations of sVEGFR1 decreased after HDC, but significantly increased after ASCT. In the CAM assay, sera of patients elicited a proangiogenic effect before and after HDC, but a strong antiangiogenic response after ASCT, comparable to that of bevacizumab at therapeutic concentrations. LP contains high concentrations of sVEGFR1, and high density of VEGFR1(+) neutrophilic granulocytes, in which mRNA expression is shifted toward the soluble VEGFR1 isoform. CONCLUSION: Neutrophil-derived antiangiogenic sVEGFR1 within the LP may contribute to the therapeutic efficacy of ASCT.
Resumo:
Nitric oxide synthase (NOS) is strongly and transiently expressed in the developing heart but its function is not well documented. This work examined the role, either protective or detrimental, that endogenous and exogenous NO could play in the functioning of the embryonic heart submitted to hypoxia and reoxygenation. Spontaneously beating hearts isolated from 4-day-old chick embryos were either homogenized to determine basal inducible NOS (iNOS) expression and activity or submitted to 30 min anoxia followed by 100 min reoxygenation. The chrono-, dromo- and inotropic responses to anoxia/reoxygenation were determined in the presence of NOS substrate (L-arginine 10 mM), NOS inhibitor L-NIO (1-5 mM), or NO donor (DETA NONOate 10-100 microM). Myocardial iNOS was detectable by immunoblotting and its activity was specifically decreased by 53% in the presence of 5 mM L-NIO. L-Arginine, L-NIO and DETA NONOate at 10 microM had no significant effect on the investigated functional parameters during anoxia/reoxygenation. However, irrespective of anoxia/reoxygenation, DETA NONOate at 100 microM decreased ventricular shortening velocity by about 70%, and reduced atrio-ventricular propagation by 23%. None of the used drugs affected atrial activity and hearts of all experimental groups fully recovered at the end of reoxygenation. These findings indicate that (1) by contrast with adult heart, endogenously released NO plays a minor role in the early response of the embryonic heart to reoxygenation, (2) exogenous NO has to be provided at high concentration to delay postanoxic functional recovery, and (3) sinoatrial pacemaker cells are the less responsive to NO.
Resumo:
The survival rate and recovery of peripheral blood cells and platelets were studied in Balb/c mice subjected to different single doses of whole-body irradiation and treated with a combination of interleukin-3 (IL-3) and interleukin-11 (IL-11). In a first group of 20 mice, 7.5 Gy irradiation, immediately followed by 2 and 5 days therapy of IL-3 and IL-11, respectively, increased the survival rate to 82% compared to 20% in untreated controls. In a second group of mice irradiated with 7 Gy, we observed significantly higher platelet, white blood cell (WBC), and red blood cell (RBC) counts after treatment with both cytokines, as compared to IL-3 or IL-11 alone or untreated controls. In addition, the survival rate of the mice with the combined therapy was also increased to 84%, compared to 48% in untreated controls. Irradiation (8.5 Gy) gave 100% mortality for the control mice, and therapy with combined IL-3 plus IL-11 had only a marginal effect. Interestingly, syngeneic bone marrow transplantation (BMT) alone, performed 16 hours after irradiation, increased the survival rate to 70%, while BMT combined with administration of IL-3 plus IL-11 increased it to 97%. Furthermore, BMT combined with cytokine administration could partially prevent the severe WBC and RBC depletion observed in mice treated with BMT alone and promoted a more rapid recovery of platelets and RBC. These data show that the combination of IL-3 and IL-11 has a radioprotective effect and can enhance recovery of platelets, WBC, and RBC in irradiated mice. Combined IL-3 plus IL-11 therapy may be clinically useful in myelodepression, especially in platelet depletion related to radiation therapy or chemotherapy, or after bone marrow transplantation.
Resumo:
An exhaustive classification of matrix effects occurring when a sample preparation is performed prior to liquid-chromatography coupled to mass spectrometry (LC-MS) analyses was proposed. A total of eight different situations were identified allowing the recognition of the matrix effect typology via the calculation of four recovery values. A set of 198 compounds was used to evaluate matrix effects after solid phase extraction (SPE) from plasma or urine samples prior to LC-ESI-MS analysis. Matrix effect identification was achieved for all compounds and classified through an organization chart. Only 17% of the tested compounds did not present significant matrix effects.
Resumo:
OBJECTIVE: Pancreatic beta-cells exposed to proinflammatory cytokines display alterations in gene expression resulting in defective insulin secretion and apoptosis. MicroRNAs are small noncoding RNAs emerging as key regulators of gene expression. Here, we evaluated the contribution of microRNAs to cytokine-mediated beta-cell cytotoxicity. RESEARCH DESIGN AND METHODS: We used global microarray profiling and real-time PCR analysis to detect changes in microRNA expression in beta-cells exposed to cytokines and in islets of pre-diabetic NOD mice. We assessed the involvement of the microRNAs affected in cytokine-mediated beta-cell failure by modifying their expression in insulin-secreting MIN6 cells. RESULTS: We found that IL-1beta and TNF-alpha induce the expression of miR-21, miR-34a, and miR-146a both in MIN6 cells and human pancreatic islets. We further show an increase of these microRNAs in islets of NOD mice during development of pre-diabetic insulitis. Blocking miR-21, miR-34a, or miR-146a function using antisense molecules did not restore insulin-promoter activity but prevented the reduction in glucose-induced insulin secretion observed upon IL-1beta exposure. Moreover, anti-miR-34a and anti-miR-146a treatment protected MIN6 cells from cytokine-triggered cell death. CONCLUSIONS: Our data identify miR-21, miR-34a, and miR-146a as novel players in beta-cell failure elicited in vitro and in vivo by proinflammatory cytokines, notably during the development of peri-insulitis that precedes overt diabetes in NOD mice.
Resumo:
The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.
Resumo:
BACKGROUND: Whether nucleoside reverse transcriptase inhibitors increase the risk of myocardial infarction in HIV-infected individuals is unclear. Our aim was to explore whether exposure to such drugs was associated with an excess risk of myocardial infarction in a large, prospective observational cohort of HIV-infected patients. METHODS: We used Poisson regression models to quantify the relation between cumulative, recent (currently or within the preceding 6 months), and past use of zidovudine, didanosine, stavudine, lamivudine, and abacavir and development of myocardial infarction in 33 347 patients enrolled in the D:A:D study. We adjusted for cardiovascular risk factors that are unlikely to be affected by antiretroviral therapy, cohort, calendar year, and use of other antiretrovirals. FINDINGS: Over 157,912 person-years, 517 patients had a myocardial infarction. We found no associations between the rate of myocardial infarction and cumulative or recent use of zidovudine, stavudine, or lamivudine. By contrast, recent-but not cumulative-use of abacavir or didanosine was associated with an increased rate of myocardial infarction (compared with those with no recent use of the drugs, relative rate 1.90, 95% CI 1.47-2.45 [p=0.0001] with abacavir and 1.49, 1.14-1.95 [p=0.003] with didanosine); rates were not significantly increased in those who stopped these drugs more than 6 months previously compared with those who had never received these drugs. After adjustment for predicted 10-year risk of coronary heart disease, recent use of both didanosine and abacavir remained associated with increased rates of myocardial infarction (1.49, 1.14-1.95 [p=0.004] with didanosine; 1.89, 1.47-2.45 [p=0.0001] with abacavir). INTERPRETATION: There exists an increased risk of myocardial infarction in patients exposed to abacavir and didanosine within the preceding 6 months. The excess risk does not seem to be explained by underlying established cardiovascular risk factors and was not present beyond 6 months after drug cessation.
Resumo:
BACKGROUND: A major goal of antiretroviral therapy (ART) for HIV-1-infected persons is the recovery of CD4 T lymphocytes, resulting in thorough protection against opportunistic complications. Interruptions of ART are still frequent. The long-term effect on CD4 T-cell recovery and clinical events remains unknown. METHODS: Immunological and clinical endpoints were evaluated in 2491 participants of the Swiss HIV Cohort Study initiating ART during a mean follow-up of 7.1 years. Data were analysed in persons with treatment interruptions (n = 1271; group A), continuous ART, but intermittent HIV-1 RNA at least 1000 copies/ml (n = 469; group B) and continuous ART and HIV-1 RNA constantly less than 1000 copies/ml (n = 751; group C). Risk factors for low CD4 T-cell counts and clinical events were analysed using Cox proportional hazards models. RESULTS: In groups A-C, CD4 T lymphocytes increased to a median of 427, 525 and 645 cells/μl at 8 years. In group A, 63.0 and 37.2% reached above 350 and 500 CD4 T cells/μl, whereas in group B 76.3 and 55.8% and in group C 87.3 and 68.0% reached these thresholds (P < 0.001). CD4 T-cell recovery directly depended on the cumulative duration of treatment interruptions. In addition, participants of group A had more Centers for Disease Control and Prevention B/C events, resulting in an increased risk of death. Major risk factors for not reaching CD4 T cells above 500 cells/μl included lower baseline CD4 T-cell count, higher age and hepatitis C virus co-infection. CONCLUSION: In persons receiving continuous ART larger CD4 T-cell recovery and a reduced risk for opportunistic complications and death was observed. CD4 T-cell recovery was smaller in persons with treatment interruptions more than 6 months.
Resumo:
Wild-type A75/17-Canine distemper virus (CDV) is a highly virulent strain, which induces a persistent infection in the central nervous system (CNS) with demyelinating disease. Wild-type A75/17-CDV, which is unable to replicate in cell lines to detectable levels, was adapted to grow in Vero cells and was designated A75/17-V. Sequence comparison between the two genomes revealed seven nucleotide differences located in the phosphoprotein (P), the matrix (M) and the large (L) genes. The P gene is polycistronic and encodes two auxiliary proteins, V and C, besides the P protein. The mutations resulted in amino acid changes in the P and V, but not in the C protein, as well as in the M and L proteins. Here, a rescue system was developed for the A75/17-V strain, which was shown to be attenuated in vivo, but retains a persistent infection phenotype in Vero cells. In order to track the recombinant virus, an additional transcription unit coding for the enhanced green fluorescent protein (eGFP) was inserted at the 3' proximal position in the A75/17-V cDNA clone. Reverse genetics technology will allow us to characterize the genetic determinants of A75/17-V CDV persistent infection in cell culture.
Resumo:
OBJECTIVES: Agriculture is considered one of the occupations most at risk of acute or chronic respiratory problems. The aim of our study was to determine from which level of exposure to organic dust the respiratory function is chronically affected in workers involved in wheat grain or straw manipulation and to test if some of these working populations can recover their respiratory function after an exposure decrease. METHOD: 87 workers exposed to wheat dust: farmers, harvesters, silo workers and livestock farmers and 62 non exposed workers, were included into a longitudinal study comprising two visits at a six months interval with lung function measurements and symptom questionnaires. Cumulative and mean exposure to wheat dust were generated from detailed work history of each worker and a task-exposure matrix based on task-specific exposure measurements. Immunoglobulins (IgG and IgE) specific of the most frequent microorganisms in wheat dust have been determined. RESULTS: FEV1 decreased significantly with the cumulative exposure and mean exposure levels. The estimated decrease was close to 200 mL per year of high exposure, which corresponds roughly to levels of wheat dust higher than 10 mg/m(3). Peak expiratory flow and several acute symptoms correlate with recent exposure level. Recovery of the respiratory function six months after exposure to wheat dust and evolution of exposure indicators in workers blood (IgG and IgE) will be discussed. CONCLUSIONS: These results show a chronic effect of exposure to wheat dust on bronchial obstruction. Short term effects and reversibility will be assessed using the full study results.
Resumo:
Aldosterone and vasopressin are responsible for the final adjustment of sodium and water reabsorption in the kidney. In principal cells of the kidney cortical collecting duct (CCD), the integral response to aldosterone and the long-term functional effects of vasopressin depend on transcription. In this study, we analyzed the transcriptome of a highly differentiated mouse clonal CCD principal cell line (mpkCCD(cl4)) and the changes in the transcriptome induced by aldosterone and vasopressin. Serial analysis of gene expression (SAGE) was performed on untreated cells and on cells treated with either aldosterone or vasopressin for 4 h. The transcriptomes in these three experimental conditions were determined by sequencing 169,721 transcript tags from the corresponding SAGE libraries. Limiting the analysis to tags that occurred twice or more in the data set, 14,654 different transcripts were identified, 3,642 of which do not match known mouse sequences. Statistical comparison (at P < 0.05 level) of the three SAGE libraries revealed 34 AITs (aldosterone-induced transcripts), 29 ARTs (aldosterone-repressed transcripts), 48 VITs (vasopressin-induced transcripts) and 11 VRTs (vasopressin-repressed transcripts). A selection of the differentially-expressed, hormone-specific transcripts (5 VITs, 2 AITs and 1 ART) has been validated in the mpkCCD(cl4) cell line either by Northern blot hybridization or reverse transcription-PCR. The hepatocyte nuclear transcription factor HNF-3-alpha (VIT39), the receptor activity modifying protein RAMP3 (VIT48), and the glucocorticoid-induced leucine zipper protein (GILZ) (AIT28) are candidate proteins playing a role in physiological responses of this cell line to vasopressin and aldosterone.
Resumo:
This study compares the effects of two short multiple-sprint exercise (MSE) (6 × 6 s) sessions with two different recovery durations (30 s or 180 s) on the slow component of oxygen uptake ([Formula: see text]O(2)) during subsequent high-intensity exercise. Ten male subjects performed a 6-min cycling test at 50% of the difference between the gas exchange threshold and [Formula: see text]O(2peak) (Δ50). Then, the subjects performed two MSEs of 6 × 6 s separated by two intersprint recoveries of 30 s (MSE(30)) and 180 s (MSE(180)), followed 10 min later by the Δ50 (Δ50(30) and Δ50(180), respectively). Electromyography (EMG) activities of the vastus medialis and lateralis were measured throughout each exercise bout. During MSE(30), muscle activity (root mean square) increased significantly (p ≤ 0.04), with a significant leftward-shifted median frequency of the power density spectrum (MDF; p ≤ 0.01), whereas MDF was significantly rightward-shifted during MSE(180) (p = 0.02). The mean [Formula: see text]O(2) value was significantly higher in MSE(30) than in MSE(180) (p < 0.001). During Δ50(30), [Formula: see text]O(2) and the deoxygenated hemoglobin ([HHb]) slow components were significantly reduced (-27%, p = 0.02, and -34%, p = 0.003, respectively) compared with Δ50. There were no significant modifications of the [Formula: see text]O(2) slow component in Δ50(180) compared with Δ50 (p = 0.32). The neuromuscular and metabolic adaptations during MSE(30) (preferential activation of type I muscle fibers evidenced by decreased MDF and a greater aerobic metabolism contribution to the required energy demands), but not during MSE(180), may lead to reduced [Formula: see text]O(2) and [HHb] slow components, suggesting an alteration in motor units recruitment profile (i.e., change in the type of muscle fibers recruited) and (or) an improved muscle O(2) delivery during subsequent exercise.
Resumo:
Version abregée L'ischémie cérébrale est la troisième cause de mort dans les pays développés, et la maladie responsable des plus sérieux handicaps neurologiques. La compréhension des bases moléculaires et anatomiques de la récupération fonctionnelle après l'ischémie cérébrale est donc extrêmement importante et représente un domaine d'intérêt crucial pour la recherche fondamentale et clinique. Durant les deux dernières décennies, les chercheurs ont tenté de combattre les effets nocifs de l'ischémie cérébrale à l'aide de substances exogènes qui, bien que testées avec succès dans le domaine expérimental, ont montré un effet contradictoire dans l'application clinique. Une approche différente mais complémentaire est de stimuler des mécanismes intrinsèques de neuroprotection en utilisant le «modèle de préconditionnement» : une brève insulte protège contre des épisodes d'ischémie plus sévères à travers la stimulation de voies de signalisation endogènes qui augmentent la résistance à l'ischémie. Cette approche peut offrir des éléments importants pour clarifier les mécanismes endogènes de neuroprotection et fournir de nouvelles stratégies pour rendre les neurones et la glie plus résistants à l'attaque ischémique cérébrale. Dans un premier temps, nous avons donc étudié les mécanismes de neuroprotection intrinsèques stimulés par la thrombine, un neuroprotecteur «préconditionnant» dont on a montré, à l'aide de modèles expérimentaux in vitro et in vivo, qu'il réduit la mort neuronale. En appliquant une technique de microchirurgie pour induire une ischémie cérébrale transitoire chez la souris, nous avons montré que la thrombine peut stimuler les voies de signalisation intracellulaire médiées par MAPK et JNK par une approche moléculaire et l'analyse in vivo d'un inhibiteur spécifique de JNK (L JNK) .Nous avons également étudié l'impact de la thrombine sur la récupération fonctionnelle après une attaque et avons pu démontrer que ces mécanismes moléculaires peuvent améliorer la récupération motrice. La deuxième partie de cette étude des mécanismes de récupération après ischémie cérébrale est basée sur l'investigation des bases anatomiques de la plasticité des connections cérébrales, soit dans le modèle animal d'ischémie transitoire, soit chez l'homme. Selon des résultats précédemment publiés par divers groupes ,nous savons que des mécanismes de plasticité aboutissant à des degrés divers de récupération fonctionnelle sont mis enjeu après une lésion ischémique. Le résultat de cette réorganisation est une nouvelle architecture fonctionnelle et structurelle, qui varie individuellement selon l'anatomie de la lésion, l'âge du sujet et la chronicité de la lésion. Le succès de toute intervention thérapeutique dépendra donc de son interaction avec la nouvelle architecture anatomique. Pour cette raison, nous avons appliqué deux techniques de diffusion en résonance magnétique qui permettent de détecter les changements de microstructure cérébrale et de connexions anatomiques suite à une attaque : IRM par tenseur de diffusion (DT-IR1V) et IRM par spectre de diffusion (DSIRM). Grâce à la DT-IRM hautement sophistiquée, nous avons pu effectuer une étude de follow-up à long terme chez des souris ayant subi une ischémie cérébrale transitoire, qui a mis en évidence que les changements microstructurels dans l'infarctus ainsi que la modification des voies anatomiques sont corrélés à la récupération fonctionnelle. De plus, nous avons observé une réorganisation axonale dans des aires où l'on détecte une augmentation d'expression d'une protéine de plasticité exprimée dans le cône de croissance des axones (GAP-43). En appliquant la même technique, nous avons également effectué deux études, rétrospective et prospective, qui ont montré comment des paramètres obtenus avec DT-IRM peuvent monitorer la rapidité de récupération et mettre en évidence un changement structurel dans les voies impliquées dans les manifestations cliniques. Dans la dernière partie de ce travail, nous avons décrit la manière dont la DS-IRM peut être appliquée dans le domaine expérimental et clinique pour étudier la plasticité cérébrale après ischémie. Abstract Ischemic stroke is the third leading cause of death in developed countries and the disease responsible for the most serious long-term neurological disability. Understanding molecular and anatomical basis of stroke recovery is, therefore, extremely important and represents a major field of interest for basic and clinical research. Over the past 2 decades, much attention has focused on counteracting noxious effect of the ischemic insult with exogenous substances (oxygen radical scavengers, AMPA and NMDA receptor antagonists, MMP inhibitors etc) which were successfully tested in the experimental field -but which turned out to have controversial effects in clinical trials. A different but complementary approach to address ischemia pathophysiology and treatment options is to stimulate and investigate intrinsic mechanisms of neuroprotection using the "preconditioning effect": applying a brief insult protects against subsequent prolonged and detrimental ischemic episodes, by up-regulating powerful endogenous pathways that increase resistance to injury. We believe that this approach might offer an important insight into the molecular mechanisms responsible for endogenous neuroprotection. In addition, results from preconditioning model experiment may provide new strategies for making brain cells "naturally" more resistant to ischemic injury and accelerate their rate of functional recovery. In the first part of this work, we investigated down-stream mechanisms of neuroprotection induced by thrombin, a well known neuroprotectant which has been demonstrated to reduce stroke-induced cell death in vitro and in vivo experimental models. Using microsurgery to induce transient brain ischemia in mice, we showed that thrombin can stimulate both MAPK and JNK intracellular pathways through a molecular biology approach and an in vivo analysis of a specific kinase inhibitor (L JNK1). We also studied thrombin's impact on functional recovery demonstrating that these molecular mechanisms could enhance post-stroke motor outcome. The second part of this study is based on investigating the anatomical basis underlying connectivity remodeling, leading to functional improvement after stroke. To do this, we used both a mouse model of experimental ischemia and human subjects with stroke. It is known from previous data published in literature, that the brain adapts to damage in a way that attempts to preserve motor function. The result of this reorganization is a new functional and structural architecture, which will vary from patient to patient depending on the anatomy of the damage, the biological age of the patient and the chronicity of the lesion. The success of any given therapeutic intervention will depend on how well it interacts with this new architecture. For this reason, we applied diffusion magnetic resonance techniques able to detect micro-structural and connectivity changes following an ischemic lesion: diffusion tensor MRI (DT-MRI) and diffusion spectrum MRI (DS-MRI). Using DT-MRI, we performed along-term follow up study of stroke mice which showed how diffusion changes in the stroke region and fiber tract remodeling is correlating with stroke recovery. In addition, axonal reorganization is shown in areas of increased plasticity related protein expression (GAP 43, growth axonal cone related protein). Applying the same technique, we then performed a retrospective and a prospective study in humans demonstrating how specific DTI parameters could help to monitor the speed of recovery and show longitudinal changes in damaged tracts involved in clinical symptoms. Finally, in the last part of this study we showed how DS-MRI could be applied both to experimental and human stroke and which perspectives it can open to further investigate post stroke plasticity.