110 resultados para Reverse order
Resumo:
BACKGROUND: The accumulation of mutations after long-lasting exposure to a failing combination antiretroviral therapy (cART) is problematic and severely reduces the options for further successful treatments. METHODS: We studied patients from the Swiss HIV Cohort Study who failed cART with nucleoside reverse transcriptase inhibitors (NRTIs) and either a ritonavir-boosted PI (PI/r) or a non-nucleoside reverse transcriptase inhibitor (NNRTI). The loss of genotypic activity <3, 3-6, >6 months after virological failure was analyzed with Stanford algorithm. Risk factors associated with early emergence of drug resistance mutations (<6 months after failure) were identified with multivariable logistic regression. RESULTS: Ninety-nine genotypic resistance tests from PI/r-treated and 129 from NNRTI-treated patients were analyzed. The risk of losing the activity of ≥1 NRTIs was lower among PI/r- compared to NNRTI-treated individuals <3, 3-6, and >6 months after failure: 8.8% vs. 38.2% (p = 0.009), 7.1% vs. 46.9% (p<0.001) and 18.9% vs. 60.9% (p<0.001). The percentages of patients who have lost PI/r activity were 2.9%, 3.6% and 5.4% <3, 3-6, >6 months after failure compared to 41.2%, 49.0% and 63.0% of those who have lost NNRTI activity (all p<0.001). The risk to accumulate an early NRTI mutation was strongly associated with NNRTI-containing cART (adjusted odds ratio: 13.3 (95% CI: 4.1-42.8), p<0.001). CONCLUSIONS: The loss of activity of PIs and NRTIs was low among patients treated with PI/r, even after long-lasting exposure to a failing cART. Thus, more options remain for second-line therapy. This finding is potentially of high relevance, in particular for settings with poor or lacking virological monitoring.
Resumo:
BACKGROUND: Factors promoting the emergence of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) connection domain mutations and their effect on antiretroviral therapy (ART) are still largely undetermined. We investigated this matter by analyzing genotypic resistance tests covering 400 amino acid positions in the RT of HIV-1 subtype B viruses and corresponding treatment histories and laboratory measurements. METHODS: The emergence of connection domain mutations was studied in 334 patients receiving monotherapy or dual therapy with thymidine analogues at the time of the genotypic resistance test. Response to subsequent combination ART (cART) was analyzed using Cox regression for 291 patients receiving unboosted protease inhibitors. Response was defined by ever reaching an HIV RNA level <50 copies/mL during the first cART. RESULTS: The connection domain mutations N348I, R356K, R358K, A360V, and A371V were more frequently observed in ART-exposed than ART-naive patients, of which only N348I and A360V were nonpolymorphic (with a prevalence of <1.5% in untreated patients). N348I correlated with M184V and predominantly occurred in patients receiving lamivudine and zidovudine concomitantly. A360V was not associated with specific drug combinations and was found to emerge later than M184V or thymidine analogue mutations. Nonpolymorphic connection domain mutations were rarely detected in the absence of established drug resistance mutations in ART-exposed individuals (prevalence, <1%). None of the 5 connection domain mutations associated with treatment showed a statistically significant effect on response to cART. CONCLUSIONS: Despite their frequent emergence, connection domain mutations did not show large detrimental effects on response to cART. Currently, routine implementation of connection domain sequencing seems unnecessary for developed health care settings.
Resumo:
OBJECTIVE: The reverse transcriptase inhibitor efavirenz is currently used at a fixed dose of 600 mg/d. However, dosage individualization based on plasma concentration monitoring might be indicated. This study aimed to assess the efavirenz pharmacokinetic profile and interpatient versus intrapatient variability in patients who are positive for human immunodeficiency virus, to explore the relationship between drug exposure, efficacy, and central nervous system toxicity and to build up a Bayesian approach for dosage adaptation. METHODS: The population pharmacokinetic analysis was performed by use of NONMEM based on plasma samples from a cohort of unselected patients receiving efavirenz. With the use of a 1-compartment model with first-order absorption, the influence of demographic and clinical characteristics on oral clearance and oral volume of distribution was examined. The average drug exposure during 1 dosing interval was estimated for each patient and correlated with markers of efficacy and toxicity. The population kinetic parameters and the variabilities were integrated into a Bayesian equation for dosage adaptation based on a single plasma sample. RESULTS: Data from 235 patients with a total of 719 efavirenz concentrations were collected. Oral clearance was 9.4 L/h, oral volume of distribution was 252 L, and the absorption rate constant was 0.3 h(-1). Neither the demographic covariates evaluated nor the comedications showed a clinically significant influence on efavirenz pharmacokinetics. A large interpatient variability was found to affect efavirenz relative bioavailability (coefficient of variation, 54.6%), whereas the intrapatient variability was small (coefficient of variation, 26%). An inverse correlation between average drug exposure and viral load and a trend with central nervous system toxicity were detected. This enabled the derivation of a dosing adaptation strategy suitable to bring the average concentration into a therapeutic target from 1000 to 4000 microg/L to optimize viral load suppression and to minimize central nervous system toxicity. CONCLUSIONS: The high interpatient and low intrapatient variability values, as well as the potential relationship with markers of efficacy and toxicity, support the therapeutic drug monitoring of efavirenz. However, further evaluation is needed before individualization of an efavirenz dosage regimen based on routine drug level monitoring should be recommended for optimal patient management.
The Mixture Transition Distribution Model for High-Order Markov Chains and Non-Gaussian Time Series.
Resumo:
Myeloid cells express the TNF family ligands BAFF/BLyS and APRIL, which exert their effects on B cells at different stages of differentiation via the receptors BAFFR, TACI (Transmembrane Activator and CAML-Interactor) and/or BCMA (B Cell Maturation Antigen). BAFF and APRIL are proteins expressed at the cell membrane, with both extracellular and intracellular domains. Therefore, receptor/ligand engagement may also result in signals in ligand-expressing cells via so-called "reverse signalling". In order to understand how TACI-Fc (atacicept) technically may mediate immune stimulation instead of suppression, we investigated its potential to activate reverse signalling through BAFF and APRIL. BAFFR-Fc and TACI-Fc, but not Fn14-Fc, reproducibly stimulated the ERK and other signalling pathways in bone marrow-derived mouse macrophages. However, these effects were independent of BAFF or APRIL since the same activation profile was observed with BAFF- or APRIL-deficient cells. Instead, cell activation correlated with the presence of high molecular mass forms of BAFFR-Fc and TACI-Fc and was strongly impaired in macrophages deficient for Fc receptor gamma chain. Moreover, a TACI-Fc defective for Fc receptor binding elicited no detectable signal. Although these results do not formally rule out the existence of BAFF or APRIL reverse signalling (via pathways not tested in this study), they provide no evidence in support of reverse signalling and point to the importance of using appropriate specificity controls when working with Fc receptor-expressing myeloid cells.
Resumo:
Connexin36 (Cx36) is specifically expressed in neurons and in pancreatic beta-cells. Cx36 functions as a critical regulator of insulin secretion and content in beta-cells. In order to identify the molecular mechanisms that control the beta-cell expression of Cx36, we initiated the characterization of the human 5' regulatory region of the CX36 gene. A 2043-bp fragment of the human CX36 promoter was identified from a human BAC library and fused to a luciferase reporter gene. This promoter region was sufficient to confer specific expression to the reporter gene in insulin-secreting cell lines. Within this 5' regulatory region, a putative neuron-restrictive silencer element conserved between rodent and human species was recognized and binds the neuron-restrictive silencing factor (NRSF/REST). This factor is not expressed in insulin-secreting cells and neurons; it functions as a potent repressor through the recruitment of histone deacetylase to the promoter of neuronal genes. The NRSF-mediated repression of Cx36 in HeLa cells was abolished by trichostatin A, confirming the functional importance of histone deacetylase activity. Ectopic expression, by viral gene transfer, of NRSF/REST in different insulin-secreting beta-cell lines induced a marked reduction in Cx36 mRNA and protein content. Moreover, mutations in the Cx36 neuron-restrictive silencer element relieved the low transcriptional activity of the human CX36 promoter observed in HeLa cells and in INS-1 cells expressing NRSF/REST. The data showed that cx36 gene expression in insulin-producing beta-cell lines is strictly controlled by the transcriptional repressor NRSF/REST indicating that Cx36 participates to the neuronal phenotype of the pancreatic beta-cells.
Resumo:
Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment.
Resumo:
According to the World Health Organization, 5.1% of blindnesses or visual impairments are related to corneal opacification. Cornea is a transparent tissue placed in front of the color of the eye. Its transparency is mandatory for vision. The ocular surface is a functional unit including the cornea and all the elements involved in maintaining its transparency i.e., the eyelids, the conjunctiva, the lymphoid tissue of the conjunctiva, the limbus, the lacrymal glands and the tear film. The destruction of the ocular surface is a disease caused by : traumatisms, infections, chronic inflammations, cancers, toxics, unknown causes or congenital abnormalities. The treatment of the ocular surface destruction requires a global strategy including all the elements that are involved in its physiology. The microenvironnement of the ocular surface must first be restored, i.e., the lids, the conjunctiva, the limbus and the structures that secrete the different layers of the tear film. In a second step, the transparency of the cornea can be reconstructed. A corneal graft performed in a healthy ocular surface microenvironnement will have a better survival rate. To achieve these goals, a thorough understanding of the renewal of the epitheliums and the role of the epithelial stem cells are mandatory.
Resumo:
One of the challenges of tumour immunology remains the identification of strongly immunogenic tumour antigens for vaccination. Reverse immunology, that is, the procedure to predict and identify immunogenic peptides from the sequence of a gene product of interest, has been postulated to be a particularly efficient, high-throughput approach for tumour antigen discovery. Over one decade after this concept was born, we discuss the reverse immunology approach in terms of costs and efficacy: data mining with bioinformatic algorithms, molecular methods to identify tumour-specific transcripts, prediction and determination of proteasomal cleavage sites, peptide-binding prediction to HLA molecules and experimental validation, assessment of the in vitro and in vivo immunogenic potential of selected peptide antigens, isolation of specific cytolytic T lymphocyte clones and final validation in functional assays of tumour cell recognition. We conclude that the overall low sensitivity and yield of every prediction step often requires a compensatory up-scaling of the initial number of candidate sequences to be screened, rendering reverse immunology an unexpectedly complex approach.
Resumo:
HYPOTHESIS: The nonanatomical design of reverse shoulder prostheses induce medial displacement of the center of rotation, impingements and may reduce the mobility of the shoulder. The aim of this study is to test the hypothesis that during activities of daily living functional mobility of the shoulder can be restored by scapular compensation. MATERIAL AND METHODS: A numerical 3-dimensional model was developed to reproduce the movement of the scapula and humerus, during 4 activities of daily living measured experimentally. This hypothesis was tested in 4 configurations of the aequalis reverse prosthesis (standard 36-mm glenosphere, 42-mm glenosphere, lateralized 36-mm glenosphere, lateralized Bony Increased-Offset Reverse Shoulder Arthroplasty [BIO-RSA]), which were implanted in the virtual model. All impingement positions were evaluated, as the required scapular compensation to avoid impingements. RESULTS: With the 36-mm glenosphere, impingements occurred only for rest of hand to back-pocket positions. The 42-mm partly improved the mobility. The 2 lateralized glenospheres were free of impingement. When impingements occurred, the scapular compensation was less than 10°. CONCLUSION: Most reverse prostheses impingements reported in clinical and biomechanical studies can be avoided, either by scapular compensation or by a glenosphere lateralization. After reverse shoulder arthroplasty, a fraction of the mobility of the gleno-humeral is transferred to the scapulo-thoracic joint.
Resumo:
The leaves of all plants use elaborate and inducible defence systems to protect themselves. A wide variety of such defences are known and they include defence chemicals such as alkaloids, phenolics and terpenes, physical structures ranging from fibre cells to silica deposits, and a wide variety of defence proteins many of which target digestive processes in herbivores. It has long been known that the defence responses of plants under attack by insects are not restricted to the site of attack. Instead, if a leaf is damaged, defence can be triggered in other parts of the plant body, for example in distal leaves or even in roots and flowers. This raises the question of what are the organ-to-organ signals that coordinate this process. Several hypotheses have been proposed. These include the long-distance transfer of chemical signals through the plant vasculature, hydraulic signals that may transit through the xylem, and electrical signals that would move through living tissues such as the phloem. Much evidence for each of these scenarios has been published. In this thesis we took advantage of the fact that many plant defence responses are regulated by a signal transduction pathway based on a molecule called jasmonic acid. We used this molecule, one of its derivatives (jasmonoyl-isoleucine), and some of the genes it regulates as markers. Using these we investigated the possible role of the electrical signals in the leaf- to-leaf activation of the jasmonate pathway. We found that feeding insects stimulate easily detected electrical activity in the leaves of Arabidopsis thaliana and we used non-invasive surface electrodes to record this activity. This approach showed that jasmonate pathway activity and the electrical activity provoked by mechanical wounding occurred within identical spatial boundaries. Measurements of the apparent speed of surface potentials agreed well with previous velocity estimates for the speed of leaf-to-leaf signals that activate the jasmonate pathway. Using this knowledge we were able to investigate the effects of current injection into Arabidopsis leaves. This resulted in the strong expression of many jasmonate-regulated genes. All these results showed that electrical activity and the activation of jasmonate signalling were highly correlated. In order to test for possible causal links between the two processes, we conducted a small-scale reverse genetic screen on a series of T-DNA insertion mutants in ion channel genes and in other genes encoding proteins such as proton pumps. This screen, which was based on surface potential measurements, revealed that mutations in genes related to ionotropic glutamate receptors in animals had impaired electrical activity after wounding. Combining mutation of two of these glutamate-receptor-like genes in a double mutant reduced the response of leaves to current injection. When a leaf of this double mutant was wounded it failed to transmit a long-distance signal to a distal leaf. This result distinguished the double mutant from the wild-type plant and provides the first genetic evidence that electrical signalling is necessary to coordinate defence responses between organs in plants. - Les feuilles des plantes disposent de systèmes de défense inductibles très élaborés. Un grand nombre de ces systèmes de défenses sont connus et sont basés sur des composés chimiques comme les alcaloïdes, les composés phénoliques ou les terpènes, des systèmes physiques allant de la production de cellules fibreuses aux cristaux de silice ainsi qu'un grand nombre de protéines de défense ciblant le processus digestif des herbivores. Il est connu dépuis longtemps que la réponse défensive de la plante face à l'attaque pas un insecte n'est pas seulement localisée au niveau de la zone d'attaque. A la place, si une feuille est attaquée, les systèmes de défense peuvent être activés ailleurs dans la plante, comme par exemple dans d'autres feuilles, les racines ou même les fleurs. Ces observations soulèvent la question de la nature des signaux d'organes à organes qui régulent ces systèmes. Plusieurs hypothèses ont été formulées; une ou plusieures molécules pourraient être véhiculées dans la plante grâce au système vasculaire, un signal hydraulique transmis au travers du xylème ou encore des signaux électriques transmis par les cellules comme dans le phloème par exemple. De nombreuses études ont été publiées sur ces différentes hypothèses. Dans ce travail de thèse, nous avons choisi d'utiliser à notre avantage le fait que de nombreuses réponses de défense de la plante sont régulées par une même voie de signalisation utilisant l'acide jasmonique. Nous avons utilisé comme marqueurs cette molécule, un de ses dérivés (le jasmonoyl-isoleucine) ainsi que certains des gènes que l'acide jasmonique régule. Nous avons alors testé l'implication de la transmission de signaux électriques dans l'activation de la voie du jasmonate de feuille à feuille. Nous avons découvert que les insectes qui se nourrissent de feuilles d'Arabidopsis thaliana activent un signal électrique que nous avons pu mesurer grâce à une technique non invasive d'électrodes de surface. Les enregistrements ont montré que la génération de signaux électriques et l'activation de la voie du jasmonate avaient lieu aux mêmes endroits. La mesure de la vitesse de déplacement des impulsions électriques correspond aux estimations faites concernant l'activation de la voie du jasmonate. Grâce à cela, nous avons pu tester l'effet d'injection de courant électrique dans les feuilles d'Arabidopsis. La conséquence a été une forte expression de nombreux gènes de la voie du jasmonate, suggérant une forte corrélation entre l'activité électrique et l'activation de la voie du jasmonate. Afin de tester le lien de cause entre ces deux phénomènes, nous avons entrepris un criblage génétique sur une série de mutants d'insertion à l'ADN-T dans des gènes de canaux ioniques et d'autres gènes d'intérêt comme les gènes des pompes à protons. Ce criblage, basé sur la mesure de potentiels de surface, a permis de montrer que plusieurs mutations de gènes liés aux récepteurs au glutamate ionotropique présentent une baisse drastique de leurs activités électriques après une blessure mécanique des feuilles par rapport au type sauvage. Par la combinaison de deux mutations de ces récepteurs au glutamate en un double mutant, on obtient une réponse à la stimulation électrique encore plus faible. Quand une feuille du double mutant est blessée, elle est incapable de transmettre un signal à longue distance vers une feuille éloignée. Ce résultat permet de distinguer le double mutant de la plante sauvage et amène la première preuve génétique que l'activité électrique est nécessaire pour coordonner les réponses de défense entre les organes chez les plantes.
Resumo:
Introduction: Several studies have reported significant alteration of the scapula-humeral rythm after total shoulder arthroplasty. However, the biomechanical and clinical effects, particularly on implants lifespan, are still unknown. The goal of this study was to evaluate the biomechanical consequences of an altered scapula-humeral rhythm. Methods: A numerical musculoskeletal model of the shoulder was used. The model included the scapula, the humerus and 6 scapulohumeral muscles: middle, anterior, and posterior deltoid, supraspinatus, subscapularis and infraspinatus combined with teres minor. Arm motion and joint stability were achieved by muscles. The reverse and anatomic Aequalis prostheses (Tornier Inc) were inserted. Two scapula-humeral rhythms were considered for each prosthesis: a normal 2:1 rhythm, and an altered 1:2 rhythm. For the 4 configurations, a movement of abduction in the scapular plane was simulated. The gleno-humeral force and contact pattern, but also the stress in the polyethylene and cement were evaluated. Results: With the anatomical prosthesis, the gleno-humeral force increased of 23% for the altered rhythm, with a more eccentric (posterior and superior) contact. The contact pressure, polyethylene stress, and cement stress increased respectively by 20%, 48% and 64%. With the reverse prosthesis, the gleno-humeral force increased of 11% for an altered rhythm. There was nearly no effect on the contact pattern on the polyethylene component surface. Conclusion: The present study showed that alteration oft the scapula-humeral rythm induced biomechanical consequences which could preclude the long term survival of the glenoid implant of anatomic prostheses. However,an altered scapula-humeral rhythm, even severe, should not be a contra indication for the use of a reverse prosthesis.