163 resultados para Regulatory failures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many experimental models, CD4+CD25+Foxp3+ regulatory T cells (nTreg) have been identifi ed as key players in promoting peripheral transplantation (Tx) tolerance. We have been focusing on therapies based on antigen-specifi c nTreg that can control effector T cells (Teff) and prevent allograft rejection. The use of nTreg in immunotherapeutic protocols for solid organ Tx is however limited by their overall low numbers as well as the low precursor frequency of alloantigen cross-reactive nTreg expected to be found in a normal individual. Moreover, although we previously described robust protocols to generate and expand antigen-specifi c nTreg in vitro, the process requires careful selection of highly pure nTreg and cumbersome ex-vivo manipulations, rendering this strategy not easily applicable in clinical solid organ Tx. In this study, we aimed to expand Treg directly in vivo and determine their suppressive function, effi cacy and stability in promoting donor-specifi c tolerance in a stringent murine Tx model. Our data suggest that IL-2-based therapies lead to a signifi cant increase of Treg in vivo. The expanded Treg suppressed Teff proliferation (albeit slightly less effi ciently than nTreg isolated from control mice) and allowed prolonged graft survival of major MHC-mismatched skin grafts in wild-type non-lymphopenic recipients. The expanded Treg alone were however not suffi cient to induce tolerance in stringent experimental conditions. Rapamycin reduced the frequency of Teff but did not impede expansion of Treg. Pro-infl ammatory stimuli hindered the expansion of Treg and resulted in an increase in the frequency of CD4+IFN-γ+ and CD4+IL17+ T cells. We propose that IL-2-based treatments would be an effi cient method for expanding functional Treg in vivo without affecting other immune cell populations, thereby favorably shifting the pool of alloreactive T cells towards regulation in response to an allograft. However, we also highlight some potential limitations of Treg expansion such as concomitant infl ammatory events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : The Wiskott-Aldrich Syndrome (WAS) is an X-linked recessive human primary immunodeficiency. It is caused by mutations in the gene encoding the hermatopoietic specific regulator of the actin cytoskeleton Wiskott-Aldrich Syndrome Protein (WASP). Importantly, a majority of affected patients develop autoimmunity including an inflammatory bowel disease (IBD)-like disease. WASP deficient mice share many similarities with the human WAS. One of these similarities is the spontaneous development of colitis. I have focused my dissertation studies on the pathogenesis of colitis in WASP deficient mice. Prior work from our laboratory had shown that lymphocytes were required and that CD4+ T cells sufficient for colitis development. This colitis was associated with a predominant Th2-cytokine skewing. I have contributed in exploring whether the Th2 cytokine IL-4 plays a role in disease maintenance. Using two approaches to neutralize IL-4, we found that this cytokine plays a role in disease maintenance. Natural CD4*CD25*Foxp3* regulatory T cells (nTreg cells) have been implicated in the pathogenesis of several autoimmune disorders. We found that WASP deficient mice have reduced nTreg cell numbers in peripheral lymphoid organs. This was associated with functional defects in suppressing T cell proliferation and preventing colitis induced by transfer of naïve T cells into SCID recipient, which lack lymphocytes. WASP deficiency affected homing of nTreg cells to lymphoid compartments, IL-2-mediated activation and secretion of the immunomodulatory cytokine IL-10. Finally, we could prevent colitis onset via adoptive transfer of WT nTreg cells prior to colitis development. This suggests that nTreg cells dysfunction is one of the mechanisms underlying colitis development in WASP deficient mice. Future directions will aim at deciphering the role of other immune cell types, the bacterial flora, and various cytokines in colitis development in this murine model of colitis. In addition, we believe that colitis in WASP deficient mice could serve as a useful tool to evaluate nTreg cells manipulation as novel therapeutic approach for IBD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Combination antiretroviral treatment (cART) has been very successful, especially among selected patients in clinical trials. The aim of this study was to describe outcomes of cART on the population level in a large national cohort. METHODS: Characteristics of participants of the Swiss HIV Cohort Study on stable cART at two semiannual visits in 2007 were analyzed with respect to era of treatment initiation, number of previous virologically failed regimens and self reported adherence. Starting ART in the mono/dual era before HIV-1 RNA assays became available was counted as one failed regimen. Logistic regression was used to identify risk factors for virological failure between the two consecutive visits. RESULTS: Of 4541 patients 31.2% and 68.8% had initiated therapy in the mono/dual and cART era, respectively, and been on treatment for a median of 11.7 vs. 5.7 years. At visit 1 in 2007, the mean number of previous failed regimens was 3.2 vs. 0.5 and the viral load was undetectable (<50 copies/ml) in 84.6% vs. 89.1% of the participants, respectively. Adjusted odds ratios of a detectable viral load at visit 2 for participants from the mono/dual era with a history of 2 and 3, 4, >4 previous failures compared to 1 were 0.9 (95% CI 0.4-1.7), 0.8 (0.4-1.6), 1.6 (0.8-3.2), 3.3 (1.7-6.6) respectively, and 2.3 (1.1-4.8) for >2 missed cART doses during the last month, compared to perfect adherence. From the cART era, odds ratios with a history of 1, 2 and >2 previous failures compared to none were 1.8 (95% CI 1.3-2.5), 2.8 (1.7-4.5) and 7.8 (4.5-13.5), respectively, and 2.8 (1.6-4.8) for >2 missed cART doses during the last month, compared to perfect adherence. CONCLUSIONS: A higher number of previous virologically failed regimens, and imperfect adherence to therapy were independent predictors of imminent virological failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Activation of innate pattern-recognition receptors promotes CD4+ T-cell-mediated autoimmune myocarditis and subsequent inflammatory cardiomyopathy. Mechanisms that counterregulate exaggerated heart-specific autoimmunity are poorly understood. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice by immunization with α-myosin heavy chain peptide and complete Freund's adjuvant. Together with interferon-γ, heat-killed Mycobacterium tuberculosis, an essential component of complete Freund's adjuvant, converted CD11b(hi)CD11c(-) monocytes into tumor necrosis factor-α- and nitric oxide synthase 2-producing dendritic cells (TipDCs). Heat-killed M. tuberculosis stimulated production of nitric oxide synthase 2 via Toll-like receptor 2-mediated nuclear factor-κB activation. TipDCs limited antigen-specific T-cell expansion through nitric oxide synthase 2-dependent nitric oxide production. Moreover, they promoted nitric oxide synthase 2 production in hematopoietic and stromal cells in a paracrine manner. Consequently, nitric oxide synthase 2 production by both radiosensitive hematopoietic and radioresistant stromal cells prevented exacerbation of autoimmune myocarditis in vivo. CONCLUSIONS: Innate Toll-like receptor 2 stimulation promotes formation of regulatory TipDCs, which confine autoreactive T-cell responses in experimental autoimmune myocarditis via nitric oxide. Therefore, activation of innate pattern-recognition receptors is critical not only for disease induction but also for counterregulatory mechanisms, protecting the heart from exaggerated autoimmunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Validated in vitro methods for skin corrosion and irritation were adopted by the OECD and by the European Union during the last decade. In the EU, Switzerland and countries adopting the EU legislation, these assays may allow the full replacement of animal testing for identifying and classifying compounds as skin corrosives, skin irritants, and non irritants. In order to develop harmonised recommendations on the use of in vitro data for regulatory assessment purposes within the European framework, a workshop was organized by the Swiss Federal Office of Public Health together with ECVAM and the BfR. It comprised stakeholders from various European countries involved in the process from in vitro testing to the regulatory assessment of in vitro data. Discussions addressed the following questions: (1) the information requirements considered useful for regulatory assessment; (2) the applicability of in vitro skin corrosion data to assign the corrosive subcategories as implemented by the EU Classification, Labelling and Packaging Regulation; (3) the applicability of testing strategies for determining skin corrosion and irritation hazards; and (4) the applicability of the adopted in vitro assays to test mixtures, preparations and dilutions. Overall, a number of agreements and recommendations were achieved in order to clarify and facilitate the assessment and use of in vitro data from regulatory accepted methods, and ultimately help regulators and scientists facing with the new in vitro approaches to evaluate skin irritation and corrosion hazards and risks without animal data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor-infiltrating plasmacytoid dendritic cells (pDCs) have been associated with poor patient prognosis. We have recently uncovered the ability of pDCs to activate and expand a subset of tumor-infiltrating FOXP3(+) regulatory T cells that express inducible costimulator (ICOS), providing new insights into the mechanisms that govern the escape of cancer from immunosurveillance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article studies the diffusion of the main institutional feature of regulatory capitalism, namely, independent regulatory agencies. While only a few such authorities existed in Europe in the early 1980s, by the end of the twentieth century they had spread impressively across countries and sectors. The analysis finds that three classes of factors (bottom-up, top-down, and horizontal) explain this trend. First, the establishment of independent regulatory agencies was an attempt to improve credible commitment capacity when liberalizing and privatizing utilities and to alleviate the political uncertainty problem, namely, the risk to a government that its policies will be changed when it loses power. Second, Europeanization favored the creation of independent regulators. Third, individual decisions were interdependent, as governments were influenced by the decisions of others in an emulation process where the symbolic properties of independent regulators mattered more than the functions they performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immune dysregulation, Polyendocrinopathy, Enteropathy X-linked (IPEX) syndrome is a unique example of primary immunodeficiency characterized by autoimmune manifestations due to defective regulatory T (Treg) cells, in the presence of FOXP3 mutations. However, autoimmune symptoms phenotypically resembling IPEX often occur in the absence of detectable FOXP3 mutations. The cause of this "IPEX-like" syndrome presently remains unclear. To investigate whether a defect in Treg cells sustains the immunological dysregulation in IPEX-like patients, we measured the amount of peripheral Treg cells within the CD3(+) T cells by analysing demethylation of the Treg cell-Specific-Demethylated-Region (TSDR) in the FOXP3 locus and demethylation of the T cell-Specific-Demethylated-Region (TLSDR) in the CD3 locus, highly specific markers for stable Treg cells and overall T cells, respectively. TSDR demethylation analysis, alone or normalized for the total T cells, showed that the amount of peripheral Treg cells in a cohort of IPEX-like patients was significantly reduced, as compared to both healthy subjects and unrelated disease controls. This reduction could not be displayed by flow cytometric analysis, showing highly variable percentages of FOXP3(+) and CD25(+)FOXP3(+) T cells. These data provide evidence that a quantitative defect of Treg cells could be considered a common biological hallmark of IPEX-like syndrome. Since Treg cell suppressive function was not impaired, we propose that this reduction per se could sustain autoimmunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOTIVATION: Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. RESULTS: In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. AVAILABILITY: Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulatory T cells (Tregs) are characterized by a high expression of IL-2 receptor α chain (CD25) and of forkhead box P3 (FOXP3), the latter being essential for their development and function. Another major player in the regulatory function is the cytotoxic T-lymphocyte associated molecule-4 (CTLA-4) that inhibits cytotoxic responses. However, the regulation of CTLA-4 expression remains less well explored. We therefore studied the microRNA signature of circulating CD4(+) Tregs isolated from adult healthy donors and identified a signature composed of 15 differentially expressed microRNAs. Among those, miR-24, miR-145, and miR-210 were down-regulated in Tregs compared with controls and were found to have potential target sites in the 3'-UTR of FOXP3 and CTLA-4; miR-24 and miR-210 negatively regulated FOXP3 expression by directly binding to their two target sites in its 3'-UTR. On the other hand, miR-95, which is highly expressed in adult peripheral blood Tregs, positively regulated FOXP3 expression via an indirect mechanism yet to be identified. Finally, we showed that miR-145 negatively regulated CTLA-4 expression in human CD4(+) adult peripheral blood Tregs by binding to its target site in CTLA-4 transcript 3'-UTR. To our knowledge, this is the first identification of a human adult peripheral blood CD4(+) Treg microRNA signature. Moreover, unveiling one mechanism regulating CTLA-4 expression is novel and may lead to a better understanding of the regulation of this crucial gene.