212 resultados para Rameau, Jean-Philippe
Resumo:
Background: New ways of representing diffusion data emerged recently and achieved to create structural connectivitymaps in healthy brains (Hagmann P et al. (2008)). These maps have the capacity to study alterations over the entire brain at the connection and network level. This is of high interest in complex disconnection diseases like schizophrenia. In this Pathology where multiple lines of evidence suggest the association of the pathology with abnormalities in neural circuitry and impaired structural connectivity, the diffusion imaging has been widely applied. Despite the large findings, most of the research using the diffusion just uses some scalar map derived from diffusion to show that some markers of white matter integrity are diminished in several areas of the brain (Kyriakopoulos M et al (2008)). Thanks to the structural connectionmatrix constructed by the whole brain tractography, we report in this work the network connectivity alterations in the schizophrenic patients. Methods: We investigated 13 schizophrenic patients as assessed by the DIGS (Diagnostic Interview for genetic studies, DSM IV criteria) and 13 healthy controls. We have got from each volunteer a DT-MRI as well as Qball imaging dataset and a high resolution anatomic T1 performed during the same session; with a 3 T clinical MRI scanner. The controls were matched on age, gender, handedness, and parental social economic-status. For all the subjects, a low resolution connection matrix is obtained by dividing the cortex into 66 gyral based ROIs. A higher resolution matrix is constructed using 250 ROIs as described in Hagmann P et al. (2008). These ROIs are respectively used jointly with the diffusion tractography to construct the high and low resolution densities connection matrices for each subject. In a first step the matrices of the groups are compared in term of connectivity, and not in term of density to check if the pathological group shows a loss of global connectivity. In this context the density connection matrices were binarized. As some local connectivity changes were also suspected, especially in frontal and temporal areas, we have also looked for the areas where the connectivity showed significant changes. Results: The statistical analysis revealed a significant loss of global connectivity in the schizophrenic's brains at level 5%. Furthermore, by constructing specific statistics which represent local connectivity within the anatomical regions (66 ROIs) using the data obtained by the finest resolution (250 ROIs) to improve the robustness, we found the regions that cause this significant loss of connectivity. The significance is observed after multiple testing corrections by the False Discovery Rate. Discussion: The detected regions are almost the same as those reported in the literature as the involved regions in schizophrenia. Most of the connectivity decreases are noted in both hemispheres in the fronto-frontal and temporo-temporal regions as well as some temporal ROIs with their adjacent ROIs in parietal and occipital lobes.
Resumo:
INTRODUCTION: Mass casualty incidents involving victims with severe burns pose difficult and unique problems for both rescue teams and hospitals. This paper presents an analysis of the published reports with the aim of proposing a rational model for burn rescue and hospital referral for Switzerland. METHODS: Literature review including systematic searches of PubMed/Medline, reference textbooks and journals as well as landmark articles. RESULTS: Since hospitals have limited surge capacities in the event of burn disasters, a special approach to both prehospital and hospital management of these victims is required. Specialized rescue and care can be adequately met and at all levels of needs by deploying mobile burn teams to the scene. These burn teams can bring needed skills and enhance the efficiency of the classical disaster response teams. Burn teams assist with both primary and secondary triage, contribute to initial patient management and offer advice to non-specialized designated hospitals that provide acute care for burn patients with Total Burn Surface Area (TBSA) <20-30%. The main components required for successful deployments of mobile burn teams include socio-economic feasibility, streamlined logistical implementation as well as partnership coordination with other agencies including subsidiary military resources. CONCLUSIONS: Disaster preparedness plans involving burn specialists dispatched from a referral burn center can upgrade and significantly improve prehospital rescue outcome, initial resuscitation care and help prevent an overload to hospital surge capacities in case of multiple burn victims. This is the rationale behind the ongoing development and implementation of the Swiss burn plan.