49 resultados para Raggi x, laser, plasma, femtosecondo.
Resumo:
Meropenem, a carbapenem antibiotic displaying a broad spectrum of antibacterial activity, is administered in Medical Intensive Care Unit to critically ill patients undergoing continuous veno-venous haemodiafiltration (CVVHDF). However, there are limited data available to substantial rational dosing decisions in this condition. In an attempt to refine our knowledge and propose a rationally designed dosage regimen, we have developed a HPLC method to determine meropenem after solid-phase extraction (SPE) of plasma and dialysate fluids obtained from patients under CVVHDF. The assay comprises the simultaneous measurement of meropenem's open-ring metabolite UK-1a, whose fate has never been studied in CVVHDF patients. The clean-up procedure involved a SPE on C18 cartridge. Matrix components were eliminated with phosphate buffer pH 7.4 followed by 15:85 MeOH-phosphate buffer pH 7.4. Meropenem and UK-1a were subsequently desorbed with MeOH. The eluates were evaporated under nitrogen at room temperature (RT) and reconstituted in phosphate buffer pH 7.4. Separation was performed at RT on a Nucleosil 100-5 microm C18 AB cartridge column (125 x 4 mm I.D.) equipped with a guard column (8 x 4 mm I.D.) with UV-DAD detection set at 208 nm. The mobile phase was 1 ml min(-1), using a step-wise gradient elution program: %MeOH/0.005 M tetrabutylammonium chloride pH 7.4; 10/90-50/50 in 27 min. Over the range of 5-100 microg ml(-1), the regression coefficient of the calibration curves (plasma and dialysate) were >0.998. The absolute extraction recoveries of meropenem and UK-1a in plasma and filtrate-dialysate were stable and ranged from 88-93 to 72-77% for meropenem, and from 95-104 to 75-82% for UK-1a. In plasma and filtrate-dialysate, respectively, the mean intra-assay precision was 4.1 and 2.6% for meropenem and 4.2 and 3.7% for UK-1a. The inter-assay variability was 2.8 and 3.6% for meropenem and 2.3 and 2.8% for UK-1a. The accuracy was satisfactory for both meropenem and UK-1a with deviation never exceeding 9.0% of the nominal concentrations. The stability of meropenem, studied in biological samples left at RT and at +4 degrees C, was satisfactory with < 5% degradation after 1.5 h in blood but reached 22% in filtrate-dialysate samples stored at RT for 8 h, precluding accurate measurements of meropenem excreted unchanged in the filtrate-dialysate left at RT during the CVVHDF procedure. The method reported here enables accurate measurements of meropenem in critically ill patients under CVVHDF, making dosage individualisation possible in such patients. The levels of the metabolite UK-1a encountered in this population of patients were higher than those observed in healthy volunteers but was similar to those observed in patients with renal impairment under hemodialysis.
Resumo:
A gas chromatographic-mass spectrometric (GC-MS) method has been developed, for the determination of trimipramine (TRI), desmethyltrimipramine (DTRI), didesmethyltrimipramine (DDTRI), 2-hydroxytrimipramine (2-OH-TRI) and 2-hydroxydesmethyltrimipramine (2-OH-DTRI). The method includes two derivatization steps with trifluoroacetic acid anhydride and N-methyl-N-(tert.-butyldimethyl silyl)trifluoroacetamide and the use of an SE-54 capillary silica column. The limits of quantitation were found to be 2 ng/ml for DTRI and 4 ng/ml for all other substances. Besides, methods have been optimized for the hydrolysis of the glucuronic acid conjugated metabolites. This specific detection method is useful, as polymedication is a usual practice in clinical situations, and its sensitivity allows its use for single-dose pharmacokinetic studies.
Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.
Resumo:
Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function.
Resumo:
Biomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst. The release kinetics correlated with the inhibitory effects on the pathogens Pseudomonas aeruginosa or Staphylococcus aureus and on animal cells that were in contact with these coatings. We identified a unique range of Ag content that provided an effective antibacterial peak release, followed by cytocompatible conditions soon thereafter. The control of the in situ growth conditions for Ag nanoparticles in the polymer matrix offers the possibility to produce customized coatings that initially release sufficient quantities of Ag ions to produce a strong adjacent antibacterial effect, and at the same time exhibit a rapidly decaying Ag content to provide surface cytocompatibility within hours/days. This approach seems to be favourable with respect to implant surfaces and possible Ag-resistance/tolerance built-up.
Resumo:
AIM: Total imatinib concentrations are currently measured for the therapeutic drug monitoring of imatinib, whereas only free drug equilibrates with cells for pharmacological action. Due to technical and cost limitations, routine measurement of free concentrations is generally not performed. In this study, free and total imatinib concentrations were measured to establish a model allowing the confident prediction of imatinib free concentrations based on total concentrations and plasma proteins measurements. METHODS: One hundred and fifty total and free plasma concentrations of imatinib were measured in 49 patients with gastrointestinal stromal tumours. A population pharmacokinetic model was built up to characterize mean total and free concentrations with inter-patient and intrapatient variability, while taking into account α1 -acid glycoprotein (AGP) and human serum albumin (HSA) concentrations, in addition to other demographic and environmental covariates. RESULTS: A one compartment model with first order absorption was used to characterize total and free imatinib concentrations. Only AGP influenced imatinib total clearance. Imatinib free concentrations were best predicted using a non-linear binding model to AGP, with a dissociation constant Kd of 319 ng ml(-1) , assuming a 1:1 molar binding ratio. The addition of HSA in the equation did not improve the prediction of imatinib unbound concentrations. CONCLUSION: Although free concentration monitoring is probably more appropriate than total concentrations, it requires an additional ultrafiltration step and sensitive analytical technology, not always available in clinical laboratories. The model proposed might represent a convenient approach to estimate imatinib free concentrations. However, therapeutic ranges for free imatinib concentrations remain to be established before it enters into routine practice.
Resumo:
AIMS: The plasma levels of either brain natriuretic peptide (BNP) or the N-terminal fragment of the prohormone (NT-proBNP) have recently gained extreme importance as markers of myocardial dysfunction. Patients with type 2 diabetes are at high risk of developing cardiovascular complications. This study was aimed to assess whether plasma NT-proBNP levels are at similar levels in type 2 diabetics with or without overt cardiovascular diseases. METHODS: We assayed plasma NT-proBNP in 54 type 2 diabetics, 27 of whom had no overt macro- and/or microvascular complications, while the remaining ones had either or both. The same assay was carried out in 38 healthy control subjects age and sex matched as a group with the diabetics. RESULTS: Plasma NT-proBNP was higher in diabetics (median 121 pg/ml, interquartile range 50-240 pg/ml, ) than in those without complications (37 pg/ml, 21-54 pg/ml, P<0.01). Compared with the controls (55 pg/ml, 40-79 pg/ml), only diabetics with vascular complications had significantly increased plasma NT-proBNP levels (P<0.001). In the diabetics, coronary heart disease and nephropathy (defined according to urinary excretion of albumin) were each independently associated with elevated values of plasma NT-proBNP. CONCLUSIONS: In type 2 diabetes mellitus, patients with macro- and/or micro-vascular complications exhibit an elevation of plasma NT-proBNP levels compared to corresponding patients with no evidence of vascular disease. The excessive secretion of this peptide is independently associated with coronary artery disease and overt nephropathy. The measurement of circulating NT-proBNP concentration may therefore be useful to screen for the presence of macro- and/or microvascular disease.
Resumo:
U-Pb dating of zircons by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) is a widely used analytical technique in Earth Sciences. For U-Pb ages below 1 billion years (1 Ga), Pb-206/U-238 dates are usually used, showing the least bias by external parameters such as the presence of initial lead and its isotopic composition in the analysed mineral. Precision and accuracy of the Pb/U ratio are thus of highest importance in LA-ICPMS geochronology. We consider the evaluation of the statistical distribution of the sweep intensities based on goodness-of-fit tests in order to find a model probability distribution fitting the data to apply an appropriate formulation for the standard deviation. We then discuss three main methods to calculate the Pb/U intensity ratio and its uncertainty in the LA-ICPMS: (1) ratio-of-the-mean intensities method, (2) mean-of-the-intensity-ratios method and (3) intercept method. These methods apply different functions to the same raw intensity vs. time data to calculate the mean Pb/U intensity ratio. Thus, the calculated intensity ratio and its uncertainty depend on the method applied. We demonstrate that the accuracy and, conditionally, the precision of the ratio-of-the-mean intensities method are invariant to the intensity fluctuations and averaging related to the dwell time selection and off-line data transformation (averaging of several sweeps); we present a statistical approach how to calculate the uncertainty of this method for transient signals. We also show that the accuracy of methods (2) and (3) is influenced by the intensity fluctuations and averaging, and the extent of this influence can amount to tens of percentage points; we show that the uncertainty of these methods also depends on how the signal is averaged. Each of the above methods imposes requirements to the instrumentation. The ratio-of-the-mean intensities method is sufficiently accurate provided the laser induced fractionation between the beginning and the end of the signal is kept low and linear. We show, based on a comprehensive series of analyses with different ablation pit sizes, energy densities and repetition rates for a 193 nm ns-ablation system that such a fractionation behaviour requires using a low ablation speed (low energy density and low repetition rate). Overall, we conclude that the ratio-of-the-mean intensities method combined with low sampling rates is the most mathematically accurate among the existing data treatment methods for U-Pb zircon dating by sensitive sector field ICPMS.
Resumo:
Remorins (REMs) are proteins of unknown function specific to vascular plants. We have used imaging and biochemical approaches and in situ labeling to demonstrate that REM clusters at plasmodesmata and in approximately 70-nm membrane domains, similar to lipid rafts, in the cytosolic leaflet of the plasma membrane. From a manipulation of REM levels in transgenic tomato (Solanum lycopersicum) plants, we show that Potato virus X (PVX) movement is inversely related to REM accumulation. We show that REM can interact physically with the movement protein TRIPLE GENE BLOCK PROTEIN1 from PVX. Based on the localization of REM and its impact on virus macromolecular trafficking, we discuss the potential for lipid rafts to act as functional components in plasmodesmata and the plasma membrane.
Resumo:
Methadone is a 50:50 mixture of two enantiomers and (R)-methadone accounts for the majority of its opioid effect. The aim of this study was to determine whether a blood concentration of (R)-methadone can be associated with therapeutic response in addict patients in methadone maintenance treatment. Trough plasma concentrations of (R)-, (S)- and (R,S)-methadone were measured in 180 patients in maintenance treatment. Therapeutic response was defined by the absence of illicit opiate or cocaine in urine samples collected during a 2-month period prior to blood sampling. A large interindividual variability of (R)-methadone concentration-to-dose-to-weight ratios was found (mean, S.D., median, range: 112, 54, 100, 19-316 ng x kg/ml x mg). With regard to the consumption of illicit opiate (but not of cocaine), a therapeutic response was associated with (R)- (at 250 ng/ml) and (R,S)-methadone (at 400 ng/ml) but not with (S)-methadone concentrations. A higher specificity was calculated for (R)- than for (R,S)-methadone, as the number of non-responders above this threshold divided by the total number of non-responders was higher for (R,S)-methadone (19%) than for (R)-methadone (7%). The results support the use of therapeutic drug monitoring of (R)-methadone in cases of continued intake of illicit opiates. Due to the variability of methadone concentration-to-dose-to-weight ratios, theoretical doses of racemic methadone could be as small as 55 mg/day and as large as 921 mg/day to produce a plasma (R)-methadone concentration of 250 ng/ml in a 70-kg patient. This demonstrates the importance of individualizing methadone treatment.
Resumo:
BACKGROUND AND OBJECTIVE: The in vivo implication of various cytochrome P450 (CYP) isoforms and of P-glycoprotein on methadone kinetics is unclear. We aimed to thoroughly examine the genetic factors influencing methadone kinetics and response to treatment. METHODS: Genotyping for CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, ABCB1, and UGT2B7 polymorphisms was performed in 245 patients undergoing methadone maintenance treatment. To assess CYP3A activity, the patients were phenotyped with midazolam. RESULTS: The patients with lower CYP3A activity presented higher steady-state trough (R,S)-methadone plasma levels (4.3, 3.0, and 2.3 ng/mL x mg for low, medium, and high activity, respectively; P = .0002). As previously reported, CYP2B6*6/*6 carriers had significantly higher trough (S)-methadone plasma levels (P = .0001) and a trend toward higher (R)-methadone plasma levels (P = .07). CYP2D6 ultrarapid metabolizers presented lower trough (R,S)-methadone plasma levels compared with the extensive or intermediate metabolizers (2.4 and 3.3 ng/mL x mg, respectively; P = .04), whereas CYP2D6 poor metabolizer status showed no influence. ABCB1 3435TT carriers presented lower trough (R,S)-methadone plasma levels (2.7 and 3.4 ng/mL . mg for 3435TT and 3435CC carriers, respectively; P = .01). The CYP1A2, CYP2C9, CYP2C19, CYP3A5, and UGT2B7 genotypes did not influence methadone plasma levels. Only CYP2B6 displayed a stereoselectivity in its activity. CONCLUSION: In vivo, CYP3A4 and CYP2B6 are the major CYP isoforms involved in methadone metabolism, with CYP2D6 contributing to a minor extent. ABCB1 genetic polymorphisms also contribute slightly to the interindividual variability of methadone kinetics. The genetic polymorphisms of these 4 proteins had no influence on the response to treatment and only a small influence on the dose requirement of methadone.
Resumo:
End-stage renal disease patients have endothelial dysfunction and high plasma levels of ADMA (asymmetric omega-NG,NG-dimethylarginine), an endogenous inhibitor of NOS (NO synthase). The actual link between these abnormalities is controversial. Therefore, in the present study, we investigated whether HD (haemodialysis) has an acute impact on NO-dependent vasodilation and plasma ADMA in these patients. A total of 24 patients undergoing maintenance HD (HD group) and 24 age- and gender-matched healthy controls (Control group) were enrolled. The increase in forearm SkBF (skin blood flow) caused by local heating to 41 degrees C (SkBF41), known to depend on endothelial NO production, was determined with laser Doppler imaging. SkBF41 was expressed as a percentage of the vasodilatory reserve obtained from the maximal SkBF induced by local heating to 43 degrees C (independent of NO). In HD patients, SkBF41 was assessed on two successive HD sessions, once immediately before and once immediately after HD. Plasma ADMA was assayed simultaneously with MS/MS (tandem MS). In the Control group, SkBF41 was determined twice, on two different days, and plasma ADMA was assayed once. In HD patients, SkBF41 was identical before (82.2+/-13.1%) and after (82.7+/-12.4%) HD, but was lower than in controls (day 1, 89.6+/-6.1; day 2, 89.2+/-6.9%; P<0.01 compared with the HD group). In contrast, plasma ADMA was higher before (0.98+/-0.17 micromol/l) than after (0.58+/-0.10 micromol/l; P<0.01) HD. ADMA levels after HD did not differ from those obtained in controls (0.56+/-0.11 micromol/l). These findings show that HD patients have impaired NO-dependent vasodilation in forearm skin, an abnormality not acutely reversed by HD and not explained by ADMA accumulation.
Resumo:
OBJECTIVE: Although recent experience suggests that transmyocardial laser revascularisation (TMLR) relieves angina, its mechanism of action remains undefined. We examined its functional effects and analysed its morphological features in an animal model of acute ischaemia. METHODS: A total of 15 pigs were randomised to ligation of left marginal arteries (infarction group, n = 5), to TMLR of the left lateral wall using a holmium:yttrium-aluminium garnet (Ho:YAG) laser (laser group, n = 5), and to both (laser-infarction group, n = 5). All the animals were sacrificed 1 month after the procedure. Haemodynamics and echocardiography with segmental wall motion score were carried out at both time intervals (scale 0-3: 0, normal; 1, hypokinesia; 2, akinesia; 3, dyskinesia). Histology of the involved area was analysed. RESULTS: Laser group showed no change of the segmental wall motion score of the involved area 30 min after the laser channels were made (score: 0 +/- 0). Infarction and laser infarction groups both showed a persistent and definitive increase of the segmental wall motion score (at 30 min: 1.6 +/- 0.3 and 2 +/- 0, respectively; at 1 month: 1.8 +/- 0.2 and 1.8 +/- 0.4, respectively). These increases were all statistically significant in comparison with baseline values (P < 0.5), however comparison between infarction and laser-infarction groups showed no significant difference. On macroscopic examination of the endocardial surface, no channel was opened. On histology, there were signs of neovascularisation around the channels in the laser group, whereas in the laser-infarction group the channels were embedded in the infarction scar. CONCLUSIONS: In this acute pig model, TMLR did not provide improvement of contractility of the ischaemic myocardium. To the degree that the present study pertains to the clinical setting, the results suggest that mechanisms other than blood flow through the channels should be considered, such as a laser-induced triggering of neovascularisation or neural destruction.
Resumo:
BACKGROUND: Decreased vitamin D levels have been described in various forms of chronic liver disease and associated with advanced fibrosis. Whether this association is a cause or consequence of advanced fibrosis remains unclear to date. AIMS: To analyse combined effects of 25-OH vitamin D plasma levels and vitamin D receptor gene (VDR; NR1I1) polymorphisms on fibrosis progression rate in HCV patients. METHODS: 251 HCV patients underwent VDR genotyping (bat-haplotype: BsmI rs1544410 C, ApaI rs7975232 A and TaqI rs731236 A). Plasma 25-OH vitamin D levels were quantified in a subgroup of 97 patients without advanced fibrosis. The VDR haplotype and genotypes as well as plasma 25-OH vitamin D levels were associated with fibrosis progression. RESULTS: The bAt[CCA]-haplotype was significantly associated with fibrosis progression >0.101 U/year (P = 0.007; OR = 2.02) and with cirrhosis (P = 0.022; OR = 1.84). Forty-five percent of bAt[CCA]-haplotype patients were rapid fibrosers, 21.1% were cirrhotic. Likewise, ApaI rs7975232 CC genotype was significantly associated with fibrosis progression and cirrhosis. Lower plasma 25-OH vitamin D levels were significantly associated with fibrosis progression >0.101 U/year in F0-2 patients (P = 0.013). Combined analysis of both variables revealed a highly significant additive effect on fibrosis progression with 45.5% rapid fibrosers for bAt[CCA]-haplotype and 25-OH vitamin D < 20 μg/L compared with only 9.1% for the most favourable combination (P = 0.006). In multivariate analysis, the bAt-haplotype was an independent risk factor for fibrosis progression (P = 0.001; OR = 2.83). CONCLUSION: Low 25-OH vitamin D plasma levels and the unfavourable VDR bAt[CCA]-haplotype are associated with rapid fibrosis progression in chronic HCV patients. In combination, both variables exert significant additive effects on fibrosis progression.
Resumo:
OBJECTIVES: Little is known regarding the distribution and the determinants of leptin and adiponectin levels in the general population. DESIGN: Cross-sectional study. PATIENTS: Women (3004) and men (2552) aged 35-74 living in Lausanne, Switzerland. MEASUREMENTS: Plasma levels of leptin and adiponectin (ELISA measurement). RESULTS: Women had higher leptin and adiponectin levels than men. In both genders, leptin and adiponectin levels increased with age. After adjusting for fat mass, leptin levels were significantly and negatively associated with age in women: 18.1 +/- 0.3, 17.1 +/- 0.3, 16.7 +/- 0.3 and 15.5 +/- 0.4 ng/ml (adjusted mean +/- SE) for age groups [35-44], [45-54], [55-64] and [65-75], respectively, P < 0.001. A similar but nonsignificant trend was also found in men. Conversely, the age-related increase of adiponectin was unrelated to body fat in both genders. Post-menopausal women had higher leptin and adiponectin levels than premenopausal women, independently of hormone replacement therapy. Although body fat mass was associated with leptin and adiponectin, the associations were stronger with body mass index (BMI), waist and hip in both genders. Finally, after adjusting for age and anthropometry, no relationships were found between leptin or adiponectin levels with alcohol, caffeine consumption and physical activity, whereas smoking and diabetes decreased leptin and adiponectin levels in women only. CONCLUSIONS: The age-related increase in leptin levels is attributable to changes in fat mass in women and probably also in men. Leptin and adiponectin levels are more related to BMI than to body fat mass. The effects of smoking and diabetes appear to be gender-specific.
Resumo:
BACKGROUND: The strong observational association between total homocysteine (tHcy) concentrations and risk of coronary artery disease (CAD) and the null associations in the homocysteine-lowering trials have prompted the need to identify genetic variants associated with homocysteine concentrations and risk of CAD. OBJECTIVE: We tested whether common genetic polymorphisms associated with variation in tHcy are also associated with CAD. DESIGN: We conducted a meta-analysis of genome-wide association studies (GWAS) on tHcy concentrations in 44,147 individuals of European descent. Polymorphisms associated with tHcy (P < 10(-8)) were tested for association with CAD in 31,400 cases and 92,927 controls. RESULTS: Common variants at 13 loci, explaining 5.9% of the variation in tHcy, were associated with tHcy concentrations, including 6 novel loci in or near MMACHC (2.1 Ã- 10(-9)), SLC17A3 (1.0 Ã- 10(-8)), GTPB10 (1.7 Ã- 10(-8)), CUBN (7.5 Ã- 10(-10)), HNF1A (1.2 Ã- 10(-12)), and FUT2 (6.6 Ã- 10(-9)), and variants previously reported at or near the MTHFR, MTR, CPS1, MUT, NOX4, DPEP1, and CBS genes. Individuals within the highest 10% of the genotype risk score (GRS) had 3-μmol/L higher mean tHcy concentrations than did those within the lowest 10% of the GRS (P = 1 Ã- 10(-36)). The GRS was not associated with risk of CAD (OR: 1.01; 95% CI: 0.98, 1.04; P = 0.49). CONCLUSIONS: We identified several novel loci that influence plasma tHcy concentrations. Overall, common genetic variants that influence plasma tHcy concentrations are not associated with risk of CAD in white populations, which further refutes the causal relevance of moderately elevated tHcy concentrations and tHcy-related pathways for CAD.