65 resultados para Propellerhead Reason (Computer file)
Resumo:
BACKGROUND: Clinical practice does not always reflect best practice and evidence, partly because of unconscious acts of omission, information overload, or inaccessible information. Reminders may help clinicians overcome these problems by prompting the doctor to recall information that they already know or would be expected to know and by providing information or guidance in a more accessible and relevant format, at a particularly appropriate time. OBJECTIVES: To evaluate the effects of reminders automatically generated through a computerized system and delivered on paper to healthcare professionals on processes of care (related to healthcare professionals' practice) and outcomes of care (related to patients' health condition). SEARCH METHODS: For this update the EPOC Trials Search Co-ordinator searched the following databases between June 11-19, 2012: The Cochrane Central Register of Controlled Trials (CENTRAL) and Cochrane Library (Economics, Methods, and Health Technology Assessment sections), Issue 6, 2012; MEDLINE, OVID (1946- ), Daily Update, and In-process; EMBASE, Ovid (1947- ); CINAHL, EbscoHost (1980- ); EPOC Specialised Register, Reference Manager, and INSPEC, Engineering Village. The authors reviewed reference lists of related reviews and studies. SELECTION CRITERIA: We included individual or cluster-randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs) that evaluated the impact of computer-generated reminders delivered on paper to healthcare professionals on processes and/or outcomes of care. DATA COLLECTION AND ANALYSIS: Review authors working in pairs independently screened studies for eligibility and abstracted data. We contacted authors to obtain important missing information for studies that were published within the last 10 years. For each study, we extracted the primary outcome when it was defined or calculated the median effect size across all reported outcomes. We then calculated the median absolute improvement and interquartile range (IQR) in process adherence across included studies using the primary outcome or median outcome as representative outcome. MAIN RESULTS: In the 32 included studies, computer-generated reminders delivered on paper to healthcare professionals achieved moderate improvement in professional practices, with a median improvement of processes of care of 7.0% (IQR: 3.9% to 16.4%). Implementing reminders alone improved care by 11.2% (IQR 6.5% to 19.6%) compared with usual care, while implementing reminders in addition to another intervention improved care by 4.0% only (IQR 3.0% to 6.0%) compared with the other intervention. The quality of evidence for these comparisons was rated as moderate according to the GRADE approach. Two reminder features were associated with larger effect sizes: providing space on the reminder for provider to enter a response (median 13.7% versus 4.3% for no response, P value = 0.01) and providing an explanation of the content or advice on the reminder (median 12.0% versus 4.2% for no explanation, P value = 0.02). Median improvement in processes of care also differed according to the behaviour the reminder targeted: for instance, reminders to vaccinate improved processes of care by 13.1% (IQR 12.2% to 20.7%) compared with other targeted behaviours. In the only study that had sufficient power to detect a clinically significant effect on outcomes of care, reminders were not associated with significant improvements. AUTHORS' CONCLUSIONS: There is moderate quality evidence that computer-generated reminders delivered on paper to healthcare professionals achieve moderate improvement in process of care. Two characteristics emerged as significant predictors of improvement: providing space on the reminder for a response from the clinician and providing an explanation of the reminder's content or advice. The heterogeneity of the reminder interventions included in this review also suggests that reminders can improve care in various settings under various conditions.
Resumo:
BACKGROUND: Chemotherapy is prescribed according to protocols of several cycles. These protocols include not only therapeutic agents but also adjuvant solvents and inherent supportive care measures. Multiple errors can occur during the prescription, the transmission of documents and the drug delivery processes, and lead to potentially serious consequences. OBJECTIVE: To assess the effect of a computerised physician order entry (CPOE) system on the number of errors in prescription recorded by the centralised chemotherapy unit of a pharmacy service in a university hospital. PATIENTS AND METHODS: Existing chemotherapy protocols were standardised by a multidisciplinary team (composed of a doctor, a pharmacist and a nurse) and a CPOE system was developed from a File Maker Pro database. Chemotherapy protocols were progressively introduced into the CPOE system. The effect of the system on prescribing errors was measured over 15 months before and 21 months after starting computerised protocol prescription. Errors were classified as major (dosage and drug name) and minor (volume or type of infusion solution). RESULTS: Before computerisation, 141 errors were recorded for 940 prescribed chemotherapy regimens (15%). After introduction of the CPOE system, 75 errors were recorded for 1505 prescribed chemotherapy regimens (5%). Of these errors, 69 (92%) were recorded in prescriptions that did not use a computerised protocol. A dramatic decrease in the number of errors was noticeable when 50% of the chemotherapy protocols were prescribed through the CPOE system. CONCLUSION: Errors in chemotherapy prescription nearly disappeared after implementation of CPOE. The safety of chemotherapy prescription was markedly improved.
Resumo:
Preface The starting point for this work and eventually the subject of the whole thesis was the question: how to estimate parameters of the affine stochastic volatility jump-diffusion models. These models are very important for contingent claim pricing. Their major advantage, availability T of analytical solutions for characteristic functions, made them the models of choice for many theoretical constructions and practical applications. At the same time, estimation of parameters of stochastic volatility jump-diffusion models is not a straightforward task. The problem is coming from the variance process, which is non-observable. There are several estimation methodologies that deal with estimation problems of latent variables. One appeared to be particularly interesting. It proposes the estimator that in contrast to the other methods requires neither discretization nor simulation of the process: the Continuous Empirical Characteristic function estimator (EGF) based on the unconditional characteristic function. However, the procedure was derived only for the stochastic volatility models without jumps. Thus, it has become the subject of my research. This thesis consists of three parts. Each one is written as independent and self contained article. At the same time, questions that are answered by the second and third parts of this Work arise naturally from the issues investigated and results obtained in the first one. The first chapter is the theoretical foundation of the thesis. It proposes an estimation procedure for the stochastic volatility models with jumps both in the asset price and variance processes. The estimation procedure is based on the joint unconditional characteristic function for the stochastic process. The major analytical result of this part as well as of the whole thesis is the closed form expression for the joint unconditional characteristic function for the stochastic volatility jump-diffusion models. The empirical part of the chapter suggests that besides a stochastic volatility, jumps both in the mean and the volatility equation are relevant for modelling returns of the S&P500 index, which has been chosen as a general representative of the stock asset class. Hence, the next question is: what jump process to use to model returns of the S&P500. The decision about the jump process in the framework of the affine jump- diffusion models boils down to defining the intensity of the compound Poisson process, a constant or some function of state variables, and to choosing the distribution of the jump size. While the jump in the variance process is usually assumed to be exponential, there are at least three distributions of the jump size which are currently used for the asset log-prices: normal, exponential and double exponential. The second part of this thesis shows that normal jumps in the asset log-returns should be used if we are to model S&P500 index by a stochastic volatility jump-diffusion model. This is a surprising result. Exponential distribution has fatter tails and for this reason either exponential or double exponential jump size was expected to provide the best it of the stochastic volatility jump-diffusion models to the data. The idea of testing the efficiency of the Continuous ECF estimator on the simulated data has already appeared when the first estimation results of the first chapter were obtained. In the absence of a benchmark or any ground for comparison it is unreasonable to be sure that our parameter estimates and the true parameters of the models coincide. The conclusion of the second chapter provides one more reason to do that kind of test. Thus, the third part of this thesis concentrates on the estimation of parameters of stochastic volatility jump- diffusion models on the basis of the asset price time-series simulated from various "true" parameter sets. The goal is to show that the Continuous ECF estimator based on the joint unconditional characteristic function is capable of finding the true parameters. And, the third chapter proves that our estimator indeed has the ability to do so. Once it is clear that the Continuous ECF estimator based on the unconditional characteristic function is working, the next question does not wait to appear. The question is whether the computation effort can be reduced without affecting the efficiency of the estimator, or whether the efficiency of the estimator can be improved without dramatically increasing the computational burden. The efficiency of the Continuous ECF estimator depends on the number of dimensions of the joint unconditional characteristic function which is used for its construction. Theoretically, the more dimensions there are, the more efficient is the estimation procedure. In practice, however, this relationship is not so straightforward due to the increasing computational difficulties. The second chapter, for example, in addition to the choice of the jump process, discusses the possibility of using the marginal, i.e. one-dimensional, unconditional characteristic function in the estimation instead of the joint, bi-dimensional, unconditional characteristic function. As result, the preference for one or the other depends on the model to be estimated. Thus, the computational effort can be reduced in some cases without affecting the efficiency of the estimator. The improvement of the estimator s efficiency by increasing its dimensionality faces more difficulties. The third chapter of this thesis, in addition to what was discussed above, compares the performance of the estimators with bi- and three-dimensional unconditional characteristic functions on the simulated data. It shows that the theoretical efficiency of the Continuous ECF estimator based on the three-dimensional unconditional characteristic function is not attainable in practice, at least for the moment, due to the limitations on the computer power and optimization toolboxes available to the general public. Thus, the Continuous ECF estimator based on the joint, bi-dimensional, unconditional characteristic function has all the reasons to exist and to be used for the estimation of parameters of the stochastic volatility jump-diffusion models.
Resumo:
Introduction: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on measurement of blood concentrations. Maintaining concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. In the last decades computer programs have been developed to assist clinicians in this assignment. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Method: Literature and Internet search was performed to identify software. All programs were tested on common personal computer. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software's characteristics. Numbers of drugs handled vary widely and 8 programs offer the ability to the user to add its own drug model. 10 computer programs are able to compute Bayesian dosage adaptation based on a blood concentration (a posteriori adjustment) while 9 are also able to suggest a priori dosage regimen (prior to any blood concentration measurement), based on individual patient covariates, such as age, gender, weight. Among those applying Bayesian analysis, one uses the non-parametric approach. The top 2 software emerging from this benchmark are MwPharm and TCIWorks. Other programs evaluated have also a good potential but are less sophisticated (e.g. in terms of storage or report generation) or less user-friendly.¦Conclusion: Whereas 2 integrated programs are at the top of the ranked listed, such complex tools would possibly not fit all institutions, and each software tool must be regarded with respect to individual needs of hospitals or clinicians. Interest in computing tool to support therapeutic monitoring is still growing. Although developers put efforts into it the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capacity of data storage and report generation.
Resumo:
Objectives: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on blood concentrations measurement. Maintaining concentrations within a target range requires pharmacokinetic (PK) and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Methods: Literature and Internet were searched to identify software. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software characteristics. Numbers of drugs handled vary from 2 to more than 180, and integration of different population types is available for some programs. Nevertheless, 8 programs offer the ability to add new drug models based on population PK data. 10 computer tools incorporate Bayesian computation to predict dosage regimen (individual parameters are calculated based on population PK models). All of them are able to compute Bayesian a posteriori dosage adaptation based on a blood concentration while 9 are also able to suggest a priori dosage regimen, only based on individual patient covariates. Among those applying Bayesian analysis, MM-USC*PACK uses a non-parametric approach. The top 2 programs emerging from this benchmark are MwPharm and TCIWorks. Others programs evaluated have also a good potential but are less sophisticated or less user-friendly.¦Conclusions: Whereas 2 software packages are ranked at the top of the list, such complex tools would possibly not fit all institutions, and each program must be regarded with respect to individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Although interest in TDM tools is growing and efforts were put into it in the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capability of data storage and automated report generation.
Resumo:
Accurate prediction of transcription factor binding sites is needed to unravel the function and regulation of genes discovered in genome sequencing projects. To evaluate current computer prediction tools, we have begun a systematic study of the sequence-specific DNA-binding of a transcription factor belonging to the CTF/NFI family. Using a systematic collection of rationally designed oligonucleotides combined with an in vitro DNA binding assay, we found that the sequence specificity of this protein cannot be represented by a simple consensus sequence or weight matrix. For instance, CTF/NFI uses a flexible DNA binding mode that allows for variations of the binding site length. From the experimental data, we derived a novel prediction method using a generalised profile as a binding site predictor. Experimental evaluation of the generalised profile indicated that it accurately predicts the binding affinity of the transcription factor to natural or synthetic DNA sequences. Furthermore, the in vitro measured binding affinities of a subset of oligonucleotides were found to correlate with their transcriptional activities in transfected cells. The combined computational-experimental approach exemplified in this work thus resulted in an accurate prediction method for CTF/NFI binding sites potentially functioning as regulatory regions in vivo.
Resumo:
Background: Computer assisted cognitive remediation (CACR) was demonstrated to be efficient in improving cognitive deficits in adults with psychosis. However, scarce studies explored the outcome of CACR in adolescents with psychosis or at high risk. Aims: To investigate the effectiveness of a computer-assisted cognitive remediation (CACR) program in adolescents with psychosis or at high risk. Method: Intention to treat analyses included 32 adolescents who participated in a blinded 8-week randomized controlled trial of CACR treatment compared to computer games (CG). Cognitive abilities, symptoms and psychosocial functioning were assessed at baseline and posttreatment. Results: Improvement in visuospatial abilities was significantly greater in the CACR group than in CG. Other cognitive functions, psychotic symptoms and psychosocial functioning improved significantly, but at similar rates, in the two groups. Conclusion: CACR can be successfully administered in this population; it proved to be effective over and above CG for the most intensively trained cognitive ability.
Resumo:
There is a lack of dedicated tools for business model design at a strategic level. However, in today's economic world the need to be able to quickly reinvent a company's business model is essential to stay competitive. This research focused on identifying the functionalities that are necessary in a computer-aided design (CAD) tool for the design of business models in a strategic context. Using design science research methodology a series of techniques and prototypes have been designed and evaluated to offer solutions to the problem. The work is a collection of articles which can be grouped into three parts: First establishing the context of how the Business Model Canvas (BMC) is used to design business models and explore the way in which CAD can contribute to the design activity. The second part extends on this by proposing new technics and tools which support elicitation, evaluation (assessment) and evolution of business models design with CAD. This includes features such as multi-color tagging to easily connect elements, rules to validate coherence of business models and features that are adapted to the correct business model proficiency level of its users. A new way to describe and visualize multiple versions of a business model and thereby help in addressing the business model as a dynamic object was also researched. The third part explores extensions to the business model canvas such as an intermediary model which helps IT alignment by connecting business model and enterprise architecture. And a business model pattern for privacy in a mobile environment, using privacy as a key value proposition. The prototyped techniques and proposition for using CAD tools in business model modeling will allow commercial CAD developers to create tools that are better suited to the needs of practitioners.
Resumo:
BACKGROUND: Surveillance of multiple congenital anomalies is considered to be more sensitive for the detection of new teratogens than surveillance of all or isolated congenital anomalies. Current literature proposes the manual review of all cases for classification into isolated or multiple congenital anomalies. METHODS: Multiple anomalies were defined as two or more major congenital anomalies, excluding sequences and syndromes. A computer algorithm for classification of major congenital anomaly cases in the EUROCAT database according to International Classification of Diseases (ICD)v10 codes was programmed, further developed, and implemented for 1 year's data (2004) from 25 registries. The group of cases classified with potential multiple congenital anomalies were manually reviewed by three geneticists to reach a final agreement of classification as "multiple congenital anomaly" cases. RESULTS: A total of 17,733 cases with major congenital anomalies were reported giving an overall prevalence of major congenital anomalies at 2.17%. The computer algorithm classified 10.5% of all cases as "potentially multiple congenital anomalies". After manual review of these cases, 7% were agreed to have true multiple congenital anomalies. Furthermore, the algorithm classified 15% of all cases as having chromosomal anomalies, 2% as monogenic syndromes, and 76% as isolated congenital anomalies. The proportion of multiple anomalies varies by congenital anomaly subgroup with up to 35% of cases with bilateral renal agenesis. CONCLUSIONS: The implementation of the EUROCAT computer algorithm is a feasible, efficient, and transparent way to improve classification of congenital anomalies for surveillance and research.