121 resultados para Polymer host


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas fluorescens CHA0 is a root-associated biocontrol agent that suppresses soil-borne fungal diseases of crops. Remarkably, the pseudomonad is also endowed with systemic and oral activity against pest insects which depends on the production of the insecticidal Fit toxin. The toxin gene (fitD) is part of a virulence cassette encoding three regulators (FitF, FitG, FitH) and a type I secretion system (FitABC-E). Immunoassays with a toxin-specific antibody and transcriptional analyses involving fitG and fitH deletion and overexpression mutants identified LysR family regulator FitG and response regulator FitH as activator and repressor, respectively, of Fit toxin and transporter expression. To visualize and quantify toxin expression in single live cells by fluorescence microscopy, we developed reporters which in lieu of the native toxin protein express a fusion of the Fit toxin with red fluorescent mCherry. In a wild-type background, expression of the mCherry-tagged Fit toxin was activated at high levels in insect hosts, i.e. when needed, yet not on plant roots or in batch culture. By contrast, a derepressed fitH mutant expressed the toxin in all conditions. P. fluorescens hence can actively induce insect toxin production in response to the host environment, and FitH and FitG are key regulators in this mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arenaviruses are enveloped RNA viruses with a nonlytic life cycle that cause acute and persistent infections. Here, we investigated the role of the host cell's unfolded protein response (UPR) in infection of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). In mammalian cells, the endoplasmic reticulum (ER) chaperone protein GRP78/BiP functions as the principal sensor for the induction of the UPR and interacts with three mediators: kinase/endonuclease inositol-requiring protein 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Acute infection with LCMV resulted in a selective induction of the ATF6-regulated branch of the UPR, whereas pathways controlled by PERK and IRE1 were neither activated nor blocked. Expression of individual LCMV proteins revealed that the viral glycoprotein precursor (GPC), but not that of other viral proteins, was responsible for the induction of ATF6. Rapid downregulation of the viral GPC during transition from acute to persistent LCMV infection restored basal levels of UPR signaling. To address a possible role of ATF6 signaling in LCMV infection, we used cells deficient in site 2 protease (S2P), a metalloprotease required for the activation of ATF6. Cells deficient in S2P showed significantly lower levels of production of infectious virus during acute but not persistent infection, indicating a requirement for ATF6-mediated signaling for optimal virus multiplication. In summary, acute LCMV infection seems to selectively induce the ATF6-regulated branch of the UPR that is likely beneficial for virus replication and cell viability, but it avoids induction of PERK and IRE1, whose activation may be detrimental for virus and the host cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amoebae are unicellular protozoan present worldwide in several environments mainly feeding on bacteria. Some of them, the amoebae-resistant bacteria (ARBs), have evolved mechanisms to survive and replicate inside amoebal species. These mainly include legionella, mycobacteria and Chlamydia-related bacteria. Amoebae can provide a replicative niche, can act as reservoir for bacteria whereas the cystic form can protect the internalized bacteria. Moreover, the amoebae represent a Trojan horse for ARBs to infect animals. The long interaction between amoebae and bacteria has likely selected for bacterial virulence traits leading to the adaptation towards an intracellular lifestyle, and some ARBs have acquired the ability to infect mammals. This review intends to highlight the important uses of amoebae in several fields in microbiology by describing the main tools developed using amoebal cells. First, amoebae such as Acanthamoeba are used to isolate and discover new intracellular bacterial species by two main techniques: the amoebal co-culture and the amoebal enrichment. In the second part, taking Waddlia chondrophila as example, we summarize some important recent applications of amoebae to discover new bacterial virulence factors, in particular thanks to the amoebal plaque assay. Finally, the genetically tractable Dictyostelium discoideum is used as a model organism to study host-pathogen interactions, in particular with the development of several approaches to manipulate its genome that allowed the creation of a wide range of mutated strains largely shared within the Dictyostelium community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amount of nitrogen required to complete an insect's life cycle may vary greatly among species that have evolved distinct life history traits. Myrmecophilous caterpillars in the Lycaenidae family produce nitrogen-rich exudates from their dorsal glands to attract ants for protection, and this phenomenon has been postulated to shape the caterpillar's host-plant choice. Accordingly, it was postulated that evolution towards myrmecophily in Lycaenidae is correlated with the utilization of nitrogen-rich host plants. Although our results were consistent with the evolutionary shifts towards high-nutrient host plants serving as exaptation for the evolution of myrmecophily in lycaenids, the selection of nitrogen-rich host plants was not confined to lycaenids. Butterfly species in the nonmyrmecophilous family Pieridae also preferred nitrogen-rich host plants. Thus, we conclude that nitrogen is an overall important component in the caterpillar diet, independent of the level of myrmecophily, as nitrogen can enhance the overall insect fitness and survival. However, when nitrogen can be obtained through alternative means, as in socially parasitic lycaenid species feeding on ant brood, the selective pressure for maintaining the use of nutrient-rich host plants is relaxed, enabling the colonization of nitrogen-poor host plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human pathogen Pseudomonas aeruginosa has been shown previously to use similar virulence factors when infecting mammalian hosts or Dictyostelium amoebae. Here we randomly mutagenized a clinical isolate of P. aeruginosa, and identified mutants with attenuated virulence towards Dictyostelium. These mutant strains also exhibited a strong decrease in virulence when infecting Drosophila and mice, confirming that P. aeruginosa makes use of similar virulence traits to confront these very different hosts. Further characterization of these bacterial mutants showed that TrpD is important for the induction of the quorum-sensing circuit, while PchH and PchI are involved in the induction of the type III secretion system. These results demonstrate the usefulness and the relevance of the Dictyostelium host model to identify and analyse new virulence genes in P. aeruginosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the intimate association in host-parasite systems, parasites are expected to initiate their own reproduction when vulnerable hosts become abundant and/or when adult hosts are less resistant. In this study, we examined the variation in the intensities of a blood-sucking mite (Spinturnix myoti, Acarina) with respect to the reproductive cycle and immunocompetence of its host, the greater mouse-eared bat Myotis myotis. Reproductive, pregnant females were less immunocompetent and harboured more parasites than nonreproductive females, whilst, during lactation, immunocompetence was positively associated with female body mass. There was a dramatic increase in the T-cell response of gravid females with the advancement of gestation, which coincided with a diminution of individual parasite loads and a progressive switch of parasites from adults to juveniles. The latter not only harboured greater numbers of mites than adult female bats, but they also exhibited gravid parasites in higher proportions, indicating that juvenile hosts are more attractive for parasite reproduction than adult females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV-infected and HIV-negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV-infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host-pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21-infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5-19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5-20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV-infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In parasites, host specificity may result either from restricted dispersal capacity or from fixed coevolutionary host-parasite adaptations. Knowledge of those proximal mechanisms leading to particular host specificity is fundamental to understand host-parasite interactions and potential coevolution of parasites and hosts. The relative importance of these two mechanisms was quantified through infection and cross-infection experiments using mites and bats as a model. Monospecific pools of parasitic mites (Spinturnix myoti and S. andegavinus) were subjected either to individual bats belonging to their traditional, native bat host species, or to another substitute host species within the same bat genus (Myotis). The two parasite species reacted differently to these treatments. S. myoti exhibited a clear preference for, and had a higher fitness on, its native host, Myotis myotis. In contrast, S. andegavinus showed no host choice, although its fitness was higher on its native host M. daubentoni. The causal mechanisms mediating host specificity can apparently differ within closely related host-parasite systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candida glabrata is an emerging opportunistic pathogen that is known to develop resistance to azole drugs due to increased drug efflux. The mechanism consists of CgPDR1-mediated upregulation of ATP-binding cassette transporters. A range of gain-of-function (GOF) mutations in CgPDR1 have been found to lead not only to azole resistance but also to enhanced virulence. This implicates CgPDR1 in the regulation of the interaction of C. glabrata with the host. To identify specific CgPDR1-regulated steps of the host-pathogen interaction, we investigated in this work the interaction of selected CgPDR1 GOF mutants with murine bone marrow-derived macrophages and human acute monocytic leukemia cell line (THP-1)-derived macrophages, as well as different epithelial cell lines. GOF mutations in CgPDR1 did not influence survival and replication within macrophages following phagocytosis but led to decreased adherence to and uptake by macrophages. This may allow evasion from the host's innate cellular immune response. The interaction with epithelial cells revealed an opposite trend, suggesting that GOF mutations in CgPDR1 may favor epithelial colonization of the host by C. glabrata through increased adherence to epithelial cell layers. These data reveal that GOF mutations in CgPDR1 modulate the interaction with host cells in ways that may contribute to increased virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic differentiation is a consequence of the combination of drift and restriction in gene flow between populations due to barriers to dispersal, or selection against individuals resulting from inter-population matings In phytophagous insects, local adaptation to different kinds of host plants can sometimes lead to reproductive isolation and thus to genetic structuring, or even to speciation Acanthoscelides. obtectus Say is a bean bruchid specialized on beans of the Phaseolus vulgaris group, attacking both wild and domesticated forms of P vulgaris., and P coccineus This study reveals that the genetic structure of populations of this bruchid is explained mainly by their geographical location and is not related to a particular kind (wild or domesticated) of bean In contrast, the species of bean might have led, to some extent, to genetic structuring in these bruchids, although our sampling is too limited to address such process unambiguously. If confirmed, it would corroborate preliminary results found for the parasitoid species that attack Acanthoscelides species, which might show a genetic structure depending on the species of host plant

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of genetic diversity in AMF populations. This is largely because of difficulties in isolation and cultivation of the fungi in a clean system allowing reliable genotyping to be performed. A population of the arbuscular mycorrhizal fungus Glomus intraradices growing in an in vitro cultivation system was studied using newly developed simple sequence repeat (SSR), nuclear gene intron and mitochondrial ribosomal gene intron markers. The markers revealed a strong differentiation at the nuclear and mitochondrial level among isolates. Genotypes were nonrandomly distributed among four plots showing genetic subdivisions in the field. Meanwhile, identical genotypes were found in geographically distant locations. AMF genotypes showed significant preferences to different host plant species (Glycine max, Helianthus annuus and Allium porrum) used before the fungal in vitro culture establishment. Host plants in a field could provide a heterogeneous environment favouring certain genotypes. Such preferences may partly explain within-population patterns of genetic diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites often exert severe negative effects upon their host's fitness. Natural selection has therefore prompted the evolution of anti-parasite mechanisms such as grooming. Grooming is efficient at reducing parasitic loads in both birds and mammals, but the energetic costs it entails have not been properly quantified. We measured both the energetic metabolism and behaviour of greater mouse-eared bats submitted to three different parasite loads (no, 20 and 40 mites) during whole daily cycles. Mites greatly affected their time and energy budgets. They caused increased grooming activity, reduced the overall time devoted to resting and provoked a dramatic shortening of resting bout duration. Correspondingly, the bats' overall metabolism (oxygen consumption) increased drastically with parasite intensity and, during the course of experiments, the bats lost more weight when infested with 40 rather than 20 or no parasites. The short-term energetic constraints induced by anti-parasite grooming are probably associated with long-term detrimental effects such as a decrease in survival and overall reproductive value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Birds harbor a variety of bacteria on their plumage, some of which can degrade feathers in vitro. Whether these keratinolytic bacteria are active on live birds and can effect feather degradation on birds is debatable. The effect of such bacteria on the body condition and behavior of birds, is unknown. Using a community of feather-degrading bacteria (EB), we investigate the interaction between the activity and load of such bacteria, on the morphology, body condition, and behavior of zebra finches (Taeniopygia guttata). In Chapter 2, we find that the elevated loads of such microbes lead to a reduction in the expression of morphological traits, such as male bill color (a sexually selected trait) and uropygial gland volume, without reducing body mass, or evoking a cellular immune response. We also suggest the presence of a carotenoid based defense response in hosts, to such elevated loads of microbes and document a sex-based difference in the source of carotenoids used for such a response. In Chapter 3, we investigated the effect of EB loads on male mate choice of zebra finches, wherein male choice of females with elevated and un-altered bacterial loads, varied with male size. We found that larger males preferred females with higher bacterial load and smaller males preferred females with lower bacterial load. Chapter 4 demonstrates that the presence of melanin in feathers reduces the growth and activity of the community of feather-degrading bacteria (EB) and that the EB community can effect feather degradation in humid conditions, without broth. Additional results also demonstrate that the EB community consists of bacteria that can attach themselves to feathers on live birds and those that can live freely on avian plumage. Finally, chapter 5 demonstrates that the self-maintenance, social and sexual behaviors of birds are implicated in the infection and horizontal transmission of bacteria. It also suggests a linked oral - faecal - genital mode of transmission of pathogens in birds. These results demonstrate that differential loads of normal flora of vertebrate hosts can effect changes in their morphology and behavior. They also shed light on the role of feather-degrading bacteria in the evolution of melanin polymorphism in birds and suggest that bacteria can be active on live birds. This thesis also highlights the importance of social and, sexual behaviors of birds, in epidemiology. Résumé: Les Oiseaux ont dans leur plumage diverses bactéries dont certaines dégradent les plumes in vitro, néanmoins. Il n'est pas clair, au vu de précédentes études, si ces bactéries kératinolytiques sont actives sur des oiseaux vivants, et si celles-ci dégradent effectivement le plumage de leur hôte, L'effet de ces bactéries sur la condition corporelle ainsi que le comportement des oiseaux n'est pas connu. A l'aide d'une communauté de bactéries dégradant les plumes (EB), non pathogènes, nous examinons les interactions entre l'activité et la charge bactérienne sur la morphologie, la condition corporelle et le comportement du diamant mandarins (Taeniopygia guttata). Dans le chapitre 2, nous montrons qu'une charge élevée de ces microbes mène à une réduction de l'expression de certains traits morphologiques, tels que la couleur du bec chez le mâle (un trait soumis à sélection sexuelle), ainsi que le volume de la glande uropygienne, sans qu'il y ait une réduction de la masse corporelle, ni déclenchement d'une réponse immune cellulaire. Nos données suggèrent la présence d'une défense chez l'hôte à des charges élevées de bactéries basée sur la présence de caroténoïdes. Nous montrons, de plus une différence liée au sexe dans la source des caroténoïdes utilisé pour cette réponse. Dans le chapitre 3 nous examinons l'influence de la charge bactérienne EB sur le choix des mâles chez le diamant mandarins. Des femelles avec une charge bactérienne normale et augmentée sont choisies par les mâles et ce choix varie avec la taille des mâles. Nous avons mis en évidence que les grands mâles préfèrent les femelles avec une charge bactérienne plus élevée. Les petits mâles préfèrent les femelles avec une charge bactérienne réduite. Le chapitre 4 démontre que la présence de mélanine dans les plumes réduit la croissance et l'activité de la communauté de bactéries dégradant le plumage (EB), et que cette communauté EB peut dégrader les plumes dans des conditions humides, sans milieu de culture liquide. De plus nous montrons que cette communauté consiste en des bactéries qui peuvent s'attacher sur les plumes d'oiseaux vivants ainsi que des bactéries libres. Pour finir nous montrons dans le chapitre 5 que la maintenance corporelle, l'interaction sociale et le comportement sexuel de ces oiseaux sont impliqués dans l'infection et la transmission horizontale de ces bactéries. Nos données suggèrent une transmission orale-fécale-génitale des pathogènes chez les oiseaux. Ces résultats montrent que des charges différentes de la flore bactérienne habituelle et non pathogène de vertébrés peuvent affecter leur morphologie et leur comportement. Ils éclaircissent également le rôle des bactéries dégradant les plumes dans l'évolution du polymorphisme mélanique chez les oiseaux et suggèrent que ces bactéries peuvent être actives sur des oiseaux vivants. Cette thèse souligne également l'importance du comportement social et sexuel des oiseaux dans l'épidémiologie.