154 resultados para Particle vaccine
Resumo:
Background: Recently, more clinical trials are being conducted in Africa and Asia, therefore, background morbidity in the respective populations is of interest. Between 2000 and 2007, the International AIDS Vaccine Initiative sponsored 19 Phase 1 or 2A preventive HIV vaccine trials in the US, Europe, Sub-Saharan Africa and India, enrolling 900 healthy HIV-1 uninfected volunteers. Objective To assess background morbidity as reflected by unsolicited adverse events (AEs), unrelated to study vaccine, reported in clinical trials from four continents. Methods All but three clinical trials were double-blind, randomized, and placebo-controlled. Study procedures and data collection methods were standardized. The frequency and severity of AEs reported during the first year of the trials were analyzed. To avoid confounding by vaccine-related events, solicited reactogenicity and other AEs occurring within 28 d after any vaccination were excluded. Results In total, 2134 AEs were reported by 76% of all participants; 73% of all events were mild. The rate of AEs did not differ between placebo and vaccine recipients. Overall, the percentage of participants with any AE was higher in Africa (83%) compared with Europe (71%), US (74%) and India (65%), while the percentage of participants with AEs of moderate or greater severity was similar in all regions except India. In all regions, the most frequently reported AEs were infectious diseases, followed by gastrointestinal disorders. Conclusions Despite some regional differences, in these healthy participants selected for low risk of HIV infection, background morbidity posed no obstacle to clinical trial conduct and interpretation. Data from controlled clinical trials of preventive interventions can offer valuable insights into the health of the eligible population.
Resumo:
1. Mise en perspective de l'étude La grippe est une cause importante de morbidité et de mortalité après la transplantation d'organe. Bien que la principale stratégie de prévention de la grippe après la transplantation d'organes soit l'administration du vaccin antigrippal annuel, l'immunogénicité de ce vaccin chez les greffés d'organe n'est pas optimale. Nous avons effectué une étude prospective pour évaluer l'influence de la thérapie d'induction sur l'immunogénicité du vaccin de la grippe. 2. Méthodes Nous avons comparé la réponse au vaccin de la grippe chez deux groupes de greffés rénaux en fonction de la thérapie d'induction reçu (thymoglobulin vs basiliximab). Le taux des anticorps ont étés mesurés par inhibition de l'hémagglutination (HI). La réponse au vaccin (taux de séroconversion) a été définie comme l'augmentation > 4 fois du taux d'anticorps (immunoglobulines) et ceci a été notre outcome primaire. 3. Résultats Soixante transplantés rénaux ont été inclus dans l'étude (thymoglobuline=22, basiliximab=38). Les patients dans le group traité par thymoglobuline étaient plus âgés (p=0.16), avaient des valeurs de créatinine plus élevés (p=0.16) et avaient étés transplanté auparavant (p=0.02). Aucune différence n'a été mise en évidence au niveau de taux des immunoglobulines pour les 3 souches virales entre les 2 groupes (p=0.69 pour H INI, p=0.56 pour H3N2, p=0.7 pour Influenza Β). Le taux de séroconversion à au moins une souche virale a été de 68 % pour le groupe thymoglobuline et de 73% pour le groupe basiliximab (p=0.77). 4. Conclusion Aucune différence significative n'a été démontré dans l'immunogénicité du vaccin de la grippe dans les transplantés rénaux ayant reçu soit du thymoglobuline soit du basiliximab comme traitement d'induction.
Resumo:
Reduced expression of CD62L can identify tumor-specific T cells in lymph nodes draining murine tumors. Here, we examined whether this strategy could isolate tumor-specific T cells from vaccinated patients. Tumor vaccine-draining lymph node (TVDLN) T cells of seven patients were separated into populations with reduced (CD62LLow) or high levels of CD62L (CD62LHigh). Effector T cells generated from CD62LLow cells maintained or enriched the autologous tumor-specific type 1 cytokine response compared to unseparated TVDLN T cells in four of four patients showing tumor-specific cytokine secretion. Interestingly, effector T cells generated from CD62LLow or CD62LHigh TVDLN were polarized towards a dominant type 1 or type 2 cytokine profile, respectively. For CD62LLow T cells the type 1 cytokine profile appeared determined prior to culture. Since a tumor-specific type 1 cytokine profile appears critical for mediating anti-tumor activity in vivo, this approach might be used to isolate T cells for adoptive immunotherapy.
Resumo:
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.
Resumo:
BACKGROUND: In this study we compared the immunogenicity of influenza vaccine administered intradermally to the standard intramuscular vaccination in lung transplant recipients. METHODS: Patients were randomized to receive the trivalent inactivated seasonal 2008-9 influenza vaccine containing either 6 μg (intradermal) or 15 μg (intramuscular) of hemagglutinin per viral strain. Immunogenicity was assessed by measurement of geometric mean titer of antibodies using the hemagglutination-inhibition (HI) assay. Vaccine response was defined as a 4-fold or higher increase of antibody titers to at least one vaccine antigen. RESULTS: Eighty-five patients received either the intradermal (n = 41) or intramuscular (n = 44) vaccine. Vaccine response was seen in 6 of 41 patients (14.6%) in the intradermal vs 8 of 43 (18.6%) in the intramuscular group (p = 0.77). Seroprotection (HI ≥1:32) was 39% for H1N1, 83% for H3N2 and 29% for B strain in the intradermal group vs 28% for H1N1, 98% for H3N2 and 58% for B strain in the intramuscular group (p = 0.36 for H1N1, p = 0.02 for H3N2, p < 0.01 for B). Mild adverse events were seen in 44% of patients in the intradermal group and 34% in the intramuscular group (p = 0.38). CONCLUSIONS: Immunogenicity of the 2008-9 influenza vaccine given intradermally or intramuscularly was overall poor in lung transplant recipients. Novel strategies for influenza vaccination in this population are needed.
Resumo:
The EuroVacc 02 phase I trial has evaluated the safety and immunogenicity of a prime-boost regimen comprising recombinant DNA and the poxvirus vector NYVAC, both expressing a common immunogen consisting of Env, Gag, Pol, and Nef polypeptide domain from human immunodeficiency virus (HIV)-1 clade C isolate, CN54. 40 volunteers were randomized to receive DNA C or nothing on day 0 and at week 4, followed by NYVAC C at weeks 20 and 24. The primary immunogenicity endpoints were measured at weeks 26 and 28 by the quantification of T cell responses using the interferon gamma enzyme-linked immunospot assay. Our results indicate that the DNA C plus NYVAC C vaccine regimen was highly immunogenic, as indicated by the detection of T cell responses in 90% of vaccinees and was superior to responses induced by NYVAC C alone (33% of responders). The vaccine-induced T cell responses were (a) vigorous in the case of the env response (mean 480 spot-forming units/10(6) mononuclear cells at weeks 26/28), (b) polyfunctional for both CD4 and CD8 T cell responses, (c) broad (the average number of epitopes was 4.2 per responder), and (d) durable (T cell responses were present in 70% of vaccinees at week 72). The vaccine-induced T cell responses were strongest and most frequently directed against Env (91% of vaccines), but smaller responses against Gag-Pol-Nef were also observed in 48% of vaccinees. These results support the development of the poxvirus platform in the HIV vaccine field and the further clinical development of the DNA C plus NYVAC C vaccine regimen
Evaluation of two long synthetic merozoite surface protein 2 peptides as malaria vaccine candidates.
Resumo:
Merozoite surface protein 2 (MSP2) is a promising vaccine candidate against Plasmodium falciparum blood stages. A recombinant 3D7 form of MSP2 was a subunit of Combination B, a blood stage vaccine tested in the field in Papua New Guinea. A selective effect in favour of the allelic family not represented by the vaccine argued for a MSP2 vaccine consisting of both dimorphic variants. An alternative approach to recombinant manufacture of vaccines is the production of long synthetic peptides (LSP). LSP exceeding a length of well over 100 amino acids can now be routinely synthesized. Synthetic production of vaccine antigens cuts the often time-consuming steps of protein expression and purification short. This considerably reduces the time for a candidate to reach the phase of clinical trials. Here we present the evaluation of two long synthetic peptides representing both allelic families of MSP2 as potential vaccine candidates. The constructs were well recognized by human immune sera from different locations and different age groups. Furthermore, peptide-specific antibodies in human immune sera were associated with protection from clinical malaria. The synthetic fragments share major antigenic properties with native MSP2. Immunization of mice with these antigens yielded high titre antibody responses and monoclonal antibodies recognized parasite-derived MSP2. Our results justify taking these candidate poly-peptides into further vaccine development.
Resumo:
BACKGROUND: Therapeutic cancer vaccines aim to boost the natural immunity against transformed cancer cells, and a series of adjuvants and co-stimulatory molecules have been proposed to enhance the immune response against weak self-antigens expressed on cancer cells. For instance, a peptide/CpG-based cancer vaccine has been evaluated in several clinical trials and was shown in pre-clinical studies to favor the expansion of effector T versus Tregs cells, resulting in a potent antitumor activity, as compared to other TLR ligands. Alternatively, the adjuvant activity of CD1d-restricted invariant NKT cells (iNKT) on the innate and adaptive immunity is well demonstrated, and several CD1d glycolipid ligands are under pre-clinical and clinical evaluation. Importantly, additive or even synergistic effects have been shown upon combined CD1d/NKT agonists and TLR ligands. The aim of the present study is to combine the activation and tumor targeting of activated iNKT, NK and T cells. METHODS: Activation and tumor targeting of iNKT cells via recombinant α-galactosylceramide (αGC)-loaded CD1d-anti-HER2 fusion protein (CD1d-antitumor) is combined or not with OVA peptide/CpG vaccine. Circulating and intratumoral NK and H-2Kb/OVA-specific CD8 responses are monitored, as well as the state of activation of dendritic cells (DC) with regard to activation markers and IL-12 secretion. The resulting antitumor therapy is tested against established tumor grafts of B16 melanoma cells expressing human HER2 and ovalbumin. RESULTS: The combined CD1d/iNKT antitumor therapy and CpG/peptide-based immunization leads to optimized expansion of NK and OVA-specific CD8 T cells (CTLs), likely resulting from the maturation of highly pro-inflammatory DCs as seen by a synergistic increase in serum IL-12. The enhanced innate and adaptive immune responses result in higher tumor inhibition that correlates with increased numbers of OVA-specific CTLs at the tumor site. Antibody-mediated depletion experiments further demonstrate that in this context, CTLs rather than NK cells are essential for the enhanced tumor inhibition. CONCLUSIONS: Altogether, our study in mice demonstrates that αGC/CD1d-antitumor fusion protein greatly increases the efficacy of a therapeutic CpG-based cancer vaccine, first as an adjuvant during T cell priming and second, as a therapeutic agent to redirect immune responses to the tumor site.
Resumo:
There are various methods to collect adverse events (AEs) in clinical trials. The methods how AEs are collected in vaccine trials is of special interest: solicited reporting can lead to over-reporting events that have little or no biological relationship to the vaccine. We assessed the rate of AEs listed in the package insert for the virosomal hepatitis A vaccine Epaxal(®), comparing data collected by solicited or unsolicited self-reporting. In an open, multi-centre post-marketing study, 2675 healthy travellers received single doses of vaccine administered intramuscularly. AEs were recorded based on solicited and unsolicited questioning during a four-day period after vaccination. A total of 2541 questionnaires could be evaluated (95.0% return rate). Solicited self-reporting resulted in significantly higher (p<0.0001) rates of subjects with AEs than unsolicited reporting, both at baseline (18.9% solicited versus 2.1% unsolicited systemic AEs) and following immunization (29.6% versus 19.3% local AEs; 33.8% versus 18.2% systemic AEs). This could indicate that actual reporting rates of AEs with Epaxal(®) may be substantially lower than described in the package insert. The distribution of AEs differed significantly between the applied methods of collecting AEs. The most common AEs listed in the package insert were reported almost exclusively with solicited questioning. The reporting of local AEs was more likely than that of systemic AEs to be influenced by subjects' sex, age and study centre. Women reported higher rates of AEs than men. The results highlight the need for detailing the methods how vaccine tolerability was reported and assessed.
Resumo:
Efficient vaccination against infectious agents and tumors depends on specific antigen targeting to dendritic cells (DCs). We report here that biosafe coronavirus-based vaccine vectors facilitate delivery of multiple antigens and immunostimulatory cytokines to professional antigen-presenting cells in vitro and in vivo. Vaccine vectors based on heavily attenuated murine coronavirus genomes were generated to express epitopes from the lymphocytic choriomeningitis virus glycoprotein, or human Melan-A, in combination with the immunostimulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). These vectors selectively targeted DCs in vitro and in vivo resulting in vector-mediated antigen expression and efficient maturation of DCs. Single application of only low vector doses elicited strong and long-lasting cytotoxic T-cell responses, providing protective antiviral and antitumor immunity. Furthermore, human DCs transduced with Melan-A-recombinant human coronavirus 229E efficiently activated tumor-specific CD8(+) T cells. Taken together, this novel vaccine platform is well suited to deliver antigens and immunostimulatory cytokines to DCs and to initiate and maintain protective immunity.
Resumo:
The generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors. IMPORTANCE: We have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. These vectors are stable and express high levels of both HIV-1 antigens. Gag-induced VLPs do not interfere with NYVAC morphogenesis, are highly attenuated in immunocompromised and newborn mice after intracranial inoculation, trigger specific innate immune responses in human cells, and activate T (Env-specific CD4 and Gag-specific CD8) and B cell immune responses to the HIV antigens, leading to high antibody titers against gp140. For these reasons, these vectors can be considered vaccine candidates against HIV/AIDS and currently are being tested in macaques and humans.
Resumo:
BACKGROUND: The influence of anti-T-cell therapy in the immunogenicity of the influenza vaccine in kidney transplant recipients remains unclear. METHODS: During the 2010 to 2011 influenza season, we evaluated the immune response to the inactivated trivalent influenza vaccine in kidney transplant recipients having received Thymoglobulin or basiliximab as induction therapy. A hemagglutination inhibition assay was used to assess the immunogenicity of the vaccine. The primary outcome was geometric mean titers of hemagglutination inhibition after influenza vaccination. RESULTS: Sixty patients (Thymoglobulin n=22 and basiliximab n=38) were included. Patients in the Thymoglobulin group were older (P=0.16), showed higher creatinine levels (P=0.16) and had more frequently received a previous transplant (P=0.02). There were no significant differences in geometric mean titers for any of the three viral strains between groups (P=0.69 for H1N1, P=0.56 for H3N2, and P=0.7 for B strain). Seroconversion to at least one viral strain was seen in 15 (68%) of 22 patients in the Thymoglobulin group and 28 (73%) of 38 in the basiliximab group (P=0.77). In patients vaccinated during the first year after receiving anti-T-cell therapy (n=25), there was a trend toward lower vaccine responses in the Thymoglobulin group. Patients who received Thymoglobulin showed lower CD4 cell counts and lower levels of IgM, at an average of 16.2 months after transplantation. A multivariate analysis showed that only the absence of mycophenolate was associated with a better vaccine response (odds ratio=9.47; 95% confidence interval, 1.03-86.9; P=0.047). CONCLUSION: No significant differences were seen in immunogenicity of the influenza vaccine in kidney transplant recipients having received either Thymoglobulin or basiliximab.
Resumo:
Background: Adenovirus serotype 5 (Ad5) phase IIb vaccine trial (STEP) was prematurely stopped due to a lack of efficacy and two-fold higher incidence of HIV infection among Ad5 seropositive vaccine recipients. We have recently demonstrated that Ad5 immune complexes (Ad5 ICs)-mediated activation of the dendritic cell (DC)-T cell axis was associated with the enhancement of HIV infection in vitro. Although the direct role of Ad5 neutralizing antibodies (NAbs) in the increase of HIV susceptibility during the STEP trial is still under debate, vector-specific NAbs remain a major hurdle for vector-based gene therapies or vaccine strategies. To surmount this obstacle, vectors based on ''rare'' Ad serotypes including Ad6, Ad26, Ad36 and Ad41 were engineered.Methods: The present study aimed to determine whether Ad ICmediated DC maturation could be circumvented using these Advector candidates.Results: We found that all Ad vectors tested forming ICs with plasma containing serotype-specific NAbs had the capacity to 1) mature human DCs as monitored by the up-regulation of costimulatory molecules and the release of pro-inflammatory cytokines (TNF-a), via the stabilization of Ad capsid at endosomal but not lysosomal pH rendering Ad DNA/TLR9 interactions possible and 2) potentiate Ad-specific CD4 and CD8 T cell responses.Conclusion: In conclusion, despite a conserved DC maturation potential, the low prevalence of serotype-specific NAbs renders rare Ad vectors attractive for vaccine strategies.