161 resultados para Parasite diversity
Resumo:
Calcium-dependent protein kinases (CDPKs) are serine/threonine kinases that react in response to calcium which functions as a trigger for several mechanisms in plants and invertebrates, but not in mammals. Recent structural studies have defined the role of calcium in the activation of CDPKs and have elucidated the important structural changes caused by calcium in order to allow the kinase domain of CDPK to bind and phosphorylate the substrate. However, the role of autophosphorylation in CDPKs is still not fully understood. In Plasmodium falciparum, seven CDPKs have been identified by sequence comparison, and four of them have been characterized and assigned to play a role in parasite motility, gametogenesis and egress from red blood cells. Although PfCDPK2 was already discovered in 1997, little is known about this enzyme and its metabolic role. In this work, we have expressed and purified PfCDPK2 at high purity in its unphosphorylated form and characterized its biochemical properties. Moreover, propositions about putative substrates in P. falciparum are made based on the analysis of the phosphorylation sites on the artificial substrate myelin basic protein (MBP).
Resumo:
(Résumé de l'ouvrage) This volume embodies an uptodate and sensitive set of studies exploring the ongoing negotiation of European Muslim identities in Europe. The Editor argues there has been hitherto a three-fold response on the part of Muslims in Europe (some of whom are now 3rd generation Europeans) - integrationism, isolationism, and escapism. Today the latter two responses are giving way, it is argued, to an active shaping of Muslim European identities. The central issue remains: what degree of freedom and what potential for cultural and religious diversity can minorities have in an outwardly secular and plural European society?
Resumo:
Epidemiological studies of malaria or other vector-transmitted diseases often consider vectors as passive actors in the complex life cycle of the parasites, assuming that vector populations are homogeneous and vertebrate hosts are equally susceptible to being infected during their lifetime. However, some studies based on both human and rodent malaria systems found that mosquito vectors preferentially selected infected vertebrate hosts. This subject has been scarcely investigated in avian malaria models and even less in wild animals using natural host-parasite associations. We investigated whether the malaria infection status of wild great tits, Parus major, played a role in host selection by the mosquito vector Culex pipiens. Pairs of infected and uninfected birds were tested in a dual-choice olfactometer to assess their attractiveness to the mosquitoes. Plasmodium-infected birds attracted significantly fewer mosquitoes than the uninfected ones, which suggest that avian malaria parasites alter hosts' odours involved in vector orientation. Reaction time of the mosquitoes, that is, the time taken to select a host, and activation of mosquitoes, defined as the proportion of individuals flying towards one of the hosts, were not affected by the bird's infection status. The importance of these behavioural responses for the vector is discussed in light of recent advances in related or similar model systems.
Resumo:
Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1.
Resumo:
Documenting and preserving the genetic diversity of populations, which conditions their long-term survival, have become a major issue in conservation biology. The loss of diversity often documented in declining populations is usually assumed to result from human disturbances; however, historical biogeographic events, otherwise known to strongly impact diversity, are rarely considered in this context. We apply a multilocus phylogeographic study to investigate the late-Quaternary history of a tree frog (Hyla arborea) with declining populations in the northern and western part of its distribution range. Mitochondrial and nuclear polymorphisms reveal high genetic diversity in the Balkan Peninsula, with a spatial structure moulded by the last glaciations. While two of the main refugial lineages remained limited to the Balkans (Adriatic coast, southern Balkans), a third one expanded to recolonize Northern and Western Europe, loosing much of its diversity in the process. Our findings show that mobile and a priori homogeneous taxa may also display substructure within glacial refugia ('refugia within refugia') and emphasize the importance of the Balkans as a major European biodiversity centre. Moreover, the distribution of diversity roughly coincides with regional conservation situations, consistent with the idea that historically impoverished genetic diversity may interact with anthropogenic disturbances, and increase the vulnerability of populations. Phylogeographic models seem important to fully appreciate the risks of local declines and inform conservation strategies.
Resumo:
It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.
Resumo:
Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to drift apart to inherently different states.
Resumo:
Major climatic and geological events but also population history (secondary contacts) have generated cycles of population isolation and connection of long and short periods. Recent empirical and theoretical studies suggest that fast evolutionary processes might be triggered by such events, as commonly illustrated in ecology by the adaptive radiation of cichlid fishes (isolation and reconnection of lakes and watersheds) and in epidemiology by the fast adaptation of the influenza virus (isolation and reconnection in hosts). We test whether cyclic population isolation and connection provide the raw material (standing genetic variation) for species evolution and diversification. Our analytical results demonstrate that population isolation and connection can provide, to populations, a high excess of genetic diversity compared with what is expected at equilibrium. This excess is either cyclic (high allele turnover) or cumulates with time depending on the duration of the isolation and the connection periods and the mutation rate. We show that diversification rates of animal clades are associated with specific periods of climatic cycles in the Quaternary. We finally discuss the importance of our results for macroevolutionary patterns and for the inference of population history from genomic data.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of genetic diversity in AMF populations. This is largely because of difficulties in isolation and cultivation of the fungi in a clean system allowing reliable genotyping to be performed. A population of the arbuscular mycorrhizal fungus Glomus intraradices growing in an in vitro cultivation system was studied using newly developed simple sequence repeat (SSR), nuclear gene intron and mitochondrial ribosomal gene intron markers. The markers revealed a strong differentiation at the nuclear and mitochondrial level among isolates. Genotypes were nonrandomly distributed among four plots showing genetic subdivisions in the field. Meanwhile, identical genotypes were found in geographically distant locations. AMF genotypes showed significant preferences to different host plant species (Glycine max, Helianthus annuus and Allium porrum) used before the fungal in vitro culture establishment. Host plants in a field could provide a heterogeneous environment favouring certain genotypes. Such preferences may partly explain within-population patterns of genetic diversity.