218 resultados para Odorant-binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Staphylococcus aureus fibronectin (Fn) -binding protein A (FnBPA) is involved in bacterium-endothelium interactions which is one of the crucial events leading to infective endocarditis (IE). We previously showed that the sole expression of S. aureus FnBPA was sufficient to confer to non-invasive Lactococcus lactis bacteria the capacity to invade human endothelial cells (ECs) and to launch the typical endothelial proinflammatory and procoagulant responses that characterize IE. In the present study we further questioned whether these bacterium-EC interactions could be reproduced by single or combined FnBPA sub-domains (A, B, C or D) using a large library of truncated FnBPA constructs expressed in L. lactis. Significant invasion of cultured ECs was found for L. lactis expressing the FnBPA subdomains CD (aa 604-877) or A4(+16) (aa 432-559). Moreover, this correlates with the capacity of these fragments to elicit in vitro a marked increase in EC surface expression of both ICAM-1 and VCAM-1 and secretion of the CXCL8 chemokine and finally to induce a tissue factor-dependent endothelial coagulation response. We thus conclude that (sub)domains of the staphylococcal FnBPA molecule that express Fn-binding modules, alone or in combination, are sufficient to evoke an endothelial proinflammatory as well as a procoagulant response and thus account for IE severity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Penicillin resistance in Streptococcus spp. involves multiple mutations in both penicillin-binding proteins (PBPs) and non-PBP genes. Here, we studied the development of penicillin resistance in the oral commensal Streptococcus gordonii. Cyclic exposure of bacteria to twofold-increasing penicillin concentrations selected for a progressive 250- to 500-fold MIC increase (from 0.008 to between 2 and 4 microg/ml). The major MIC increase (> or = 35-fold) was related to non-PBP mutations, whereas PBP mutations accounted only for a 4- to 8-fold additional increase. PBP mutations occurred in class B PBPs 2X and 2B, which carry a transpeptidase domain, but not in class A PBP 1A, 1B, or 2A, which carry an additional transglycosylase domain. Therefore, we tested whether inactivation of class A PBPs affected resistance development in spite of the absence of mutations. Deletion of PBP 1A or 2A profoundly slowed down resistance development but only moderately affected resistance in already highly resistant mutants (MIC = 2 to 4 microg/ml). Thus, class A PBPs might facilitate early development of resistance by stabilizing penicillin-altered peptidoglycan via transglycosylation, whereas they might be less indispensable in highly resistant mutants which have reestablished a penicillin-insensitive cell wall-building machinery. The contribution of PBP and non-PBP mutations alone could be individualized in DNA transformation. Both PBP and non-PBP mutations conferred some level of intrinsic resistance, but combining the mutations synergized them to ensure high-level resistance (> or = 2 microg/ml). The results underline the complexity of penicillin resistance development and suggest that inhibition of transglycosylase might be an as yet underestimated way to interfere with early resistance development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of retinoic acids (RA) on liver fatty acid-binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-cis-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10(-6) M 9-cis-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-cis-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome proliferator-responsive element (PPRE) found upstream of the L-FABP gene. Our result suggest that the PPAR-RXR complex is the molecular target by which 9-cis-RA and LCFA regulate the L-FABP gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medical implants, like cardiovascular devices, improve the quality of life for countless individuals but may become infected with bacteria like Staphylococcus aureus. Such infections take the form of a biofilm, a structured community of bacterial cells adherent to the surface of a solid substrate. Every biofilm begins with an attractive force or bond between bacterium and substratum. We used atomic force microscopy to probe experimentally forces between a fibronectin-coated surface (i.e., proxy for an implanted cardiac device) and fibronectin-binding receptors on the surface of individual living bacteria from each of 80 clinical isolates of S. aureus. These isolates originated from humans with infected cardiac devices (CDI; n = 26), uninfected cardiac devices (n = 20), and the anterior nares of asymptomatic subjects (n = 34). CDI isolates exhibited a distinct binding-force signature and had specific single amino acid polymorphisms in fibronectin-binding protein A corresponding to E652D, H782Q, and K786N. In silico molecular dynamics simulations demonstrate that residues D652, Q782, and N786 in fibronectin-binding protein A form extra hydrogen bonds with fibronectin, complementing the higher binding force and energy measured by atomic force microscopy for the CDI isolates. This study is significant, because it links pathogenic bacteria biofilms from the length scale of bonds acting across a nanometer-scale space to the clinical presentation of disease at the human dimension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B lymphocytes are among the first cells to be infected by mouse mammary tumor virus (MMTV), and they play a crucial role in its life cycle. To study transcriptional regulation of MMTV in B cells, we have analyzed two areas of the long terminal repeat (LTR) next to the glucocorticoid receptor binding site, fp1 (at position -139 to -146 from the cap site) and fp2 (at -157 to -164). Both showed B-cell-specific protection in DNase I in vitro footprinting assays and contain binding sites for Ets transcription factors, a large family of proteins involved in cell proliferation and differentiation and oncogenic transformation. In gel retardation assays, fp1 and fp2 bound the heterodimeric Ets factor GA-binding protein (GABP) present in B-cell nuclear extracts, which was identified by various criteria: formation of dimers and tetramers, sensitivity to pro-oxidant conditions, inhibition of binding by specific antisera, and comigration of complexes with those formed by recombinant GABP. Mutations which prevented complex formation in vitro abolished glucocorticoid-stimulated transcription from an MMTV LTR linked to a reporter gene in transiently transfected B-cell lines, whereas they did not affect the basal level. Exogenously expressed GABP resulted in an increased level of hormone response of the LTR reporter plasmid and produced a synergistic effect with the coexpressed glucocorticoid receptor, indicating cooperation between the two. This is the first example of GABP cooperation with a steroid receptor, providing the opportunity for studying the integration of their intracellular signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of high avidity binding molecule, termed "peptabody" was created by harnessing the effect of multivalent interaction. A short peptide ligand was fused via a semi-rigid hinge region with the coiled-coil assembly domain of the cartilage oligomeric matrix protein, resulting in a pentameric multivalent binding molecule. In the first peptabody (Pab-S) described here, a peptide (S) specific for the mouse B-cell lymphoma BCL1 surface Ig idiotype, was selected from a phage display library. A fusion gene was constructed encoding peptide S, followed by the 24 aa hinge region from camel IgG and a modified 55 aa cartilage oligomeric matrix protein pentamerization domain. The Pab-S fusion protein was expressed in Escherichia coli in a soluble form at high levels and purified in a single step by metal-affinity chromatography. Pab-S specifically bound the BCL1 surface idiotype with an avidity of about 1 nM, which corresponds to a 2 x 10(5)-fold increase compared with the affinity of the synthetic peptide S itself. Biochemical characterization showed that Pab-S is a stable homopentamer of about 85 kDa, with interchain disulfide bonds. Pab-S can be dissociated under denaturing and reducing conditions and reassociated as a pentamer with full-binding activity. This intrinsic feature provides an easy way to combine Pab molecules with two different peptide specificities, thus producing heteropentamers with bispecific and/or chelating properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317-326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317-326 sequence of RasGAP (TAT-RasGAP₃₁₇₋₃₂₆), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP₃₁₇₋₃₂₆ did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP₃₁₇₋₃₂₆ was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LB11058 is a new synthetic cephalosporin with good affinity for staphylococcal penicillin-binding protein 2a (PBP2a). LB11058 was tested in vitro and in rats with experimental aortic endocarditis against three methicillin-resistant Staphylococcus aureus (MRSA) strains, one penicillinase-negative strain (strain COL), and two penicillinase-producing strains (COL-Bla+ and P8-Hom). The MICs of LB11058 for the organisms were 1 mg/liter. The MICs of vancomycin and ceftriaxone were 1 and >/=64 mg/liter, respectively. In population analysis profiles, none of the MRSA strains grew at >/=2 mg of LB11058/liter. Rats with endocarditis were treated for 5 days. LB11058 was highly bound to serum proteins in rats (>/=98%). However, binding was saturable above a threshold of 250 mg/liter. Therefore, continuous concentrations of 250 mg/liter in serum were infused to ensure a free fraction (>/=5 mg/liter) above the drug's MIC for the entire infusion period. Control treatments included simulation of human serum kinetics produced by intravenous vancomycin (1 g twice daily, free drug concentration above MIC, >/=90% of infusion period) or ceftriaxone (2 g/24 h, free drug concentrations above the MIC, 0% of infusion period). LB11058 successfully treated 10 of 10 (100%) and 13 of 14 (93%) of rats infected with COL-Bla+ and P8-Hom, respectively. This was comparable to vancomycin (sterilization of 8 of 12 [66%] and 6 of 8 [75%] rats, respectively). Ceftriaxone was inactive. Low concentrations of LB11058 (5 and 10 mg/liter, continuously infused) in serum were ineffective, as predicted by the pharmacodynamic parameters. At appropriate doses, LB11058 was highly effective both in vitro and in vivo. This finding supports the development of this beta-lactam with high PBP2a affinity for the treatment of MRSA infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Xenopus laevis 68-kd and 74-kd albumin amino acid sequences are examined with respect to their relationship to the other known members of the albumin/alpha-fetoprotein/vitamin D-binding protein gene family. Each of the three members of this family presents a unique pattern of conserved regions indicating a differential selective pressure related to specific functional characteristics. Furthermore, an evolutionary tree of these genes was deduced from the divergence times calculated from direct nucleotide sequence comparisons of individual gene pairs. These calculations indicate that the vitamin D-binding protein/albumin separation occurred 560-600 million years (Myr) ago and the albumin/alpha-fetoprotein divergence 280 Myr ago. This observation leads to the hypothesis according to which the albumin/alpha-fetoprotein gene duplication occurred shortly after the amphibian/reptile separation. Consequently, and unlike mammals, amphibians and fishes should lack an alpha-fetoprotein in their serum at larval stages, which is consistent with a recent analysis of serum proteins in Xenopus laevis larvae. This hypothesis now will have to be tested further in additional lower vertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the odorant binding proteins (OBPs) of the red imported fire ant, Solenopsis invicta, obtained from analyses of an EST library and separate 454 sequencing runs of two normalized cDNA libraries. We identified a total of 18 putative functional OBPs in this ant. A third of the fire ant OBPs are orthologs to honey bee OBPs. Another third of the OBPs belong to a lineage-specific expansion, which is a common feature of insect OBP evolution. Like other OBPs, the different fire ant OBPs share little sequence similarity (∼ 20%), rendering evolutionary analyses difficult. We discuss the resulting problems with sequence alignment, phylogenetic analysis, and tests of selection. As previously suggested, our results underscore the importance for careful exploration of the sensitivity to the effects of alignment methods for data comprising widely divergent sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CREB is a cAMP-responsive nuclear DNA-binding protein that binds to cAMP response elements and stimulates gene transcription upon activation of the cAMP signalling pathway. The protein consists of an amino-terminal transcriptional transactivation domain and a carboxyl-terminal DNA-binding domain (bZIP domain) comprised of a basic region and a leucine zipper involved in DNA recognition and dimerization, respectively. Recently, we discovered a testis-specific transcript of CREB that contains an alternatively spliced exon encoding multiple stop codons. CREB encoded by this transcript is a truncated protein lacking the bZIP domain. We postulated that the antigen detected by CREB antiserum in the cytoplasm of germinal cells is the truncated CREB that must also lack its nuclear translocation signal (NTS). To test this hypothesis we prepared multiple expression plasmids encoding carboxyl-terminal deletions of CREB and transiently expressed them in COS-1 cells. By Western immunoblot analysis as well as immunocytochemistry of transfected cells, we show that CREB proteins truncated to amino acid 286 or shorter are sequestered in the cytoplasm, whereas a CREB of 295 amino acids is translocated into the nucleus. Chimeric CREBs containing a heterologous NTS fused to the first 248 or 261 amino acids of CREB are able to drive the translocation of the protein into the nucleus. Thus, the nine amino acids in the basic region involved in DNA recognition between positions 287 and 295 (RRKKKEYVK) of CREB contain the NTS. Further, mutation of the lysine at position 290 in CREB to an asparagine diminishes nuclear translocation of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

cAMP response element binding protein-2 (CREB-2) is a basic leucine zipper (bZIP) factor that was originally described as a repressor of CRE-dependent transcription but that can also act as a transcriptional activator. Moreover, CREB-2 is able to function in association with the viral Tax protein as an activator of the human T-cell leukemia virus type I (HTLV-I) promoter. Here we show that CREB-2 is able to interact with C/EBP-homologous protein (CHOP), a bZIP transcription factor known to inhibit CAAT/enhancer-dependent transcription. Cotransfection of CHOP with CREB-2 results in decreased activation driven by the cellular CRE motif or the HTLV-I proximal Tax-responsive element, confirming that CREB-2 and CHOP can interact with each other in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although experimental studies have suggested that insulin-like growth factor I (IGF-I) and its binding protein IGFBP-3 might have a role in the aetiology of coronary artery disease (CAD), the relevance of circulating IGFs and their binding proteins in the development of CAD in human populations is unclear. We conducted a nested case-control study, with a mean follow-up of six years, within the EPIC-Norfolk cohort to assess the association between circulating levels of IGF-I and IGFBP-3 and risk of CAD in up to 1,013 cases and 2,055 controls matched for age, sex and study enrolment date. After adjustment for cardiovascular risk factors, we found no association between circulating levels of IGF-I or IGFBP-3 and risk of CAD (odds ratio: 0.98 (95% Cl 0.90-1.06) per 1 SD increase in circulating IGF-I; odds ratio: 1.02 (95% Cl 0.94-1.12) for IGFBP-3). We examined associations between tagging single nucleotide polymorphisms (tSNPs) at the IGF1 and IGFBP3 loci and circulating IGF-I and IGFBP-3 levels in up to 1,133 cases and 2,223 controls and identified three tSNPs (rs1520220, rs3730204, rs2132571) that showed independent association with either circulating IGF-I or IGFBP-3 levels. In an assessment of 31 SNPs spanning the IGF1 or IGFBP3 loci, none were associated with risk of CAD in a meta-analysis that included EPIC-Norfolk and eight additional studies comprising up to 9,319 cases and 19,964 controls. Our results indicate that IGF-I and IGFBP-3 are unlikely to be importantly involved in the aetiology of CAD in human populations.