166 resultados para ORIENTED ATTACHMENT MECHANISM
Resumo:
The pharmacological activity of several amphiphilic drugs is often related to their ability to interact with biological membranes. Propranolol is an efficient multidrug resistance (MDR) modulator; it is a nonselective beta-blocker and is thought to reduce hypertension by decreasing the cardiac frequency and thus blood pressure. It is used in drug delivery studies in order to treat systemic hypertension. We are interested in the interaction of propranolol with artificial membranes, as liposomes of controllable size are used as biocompatible and protective structures to encapsulate labile molecules, such as proteins, nucleic acids or drugs, for pharmaceutical, cosmetic or chemical applications. We present here a study of the interaction of propranolol, a cationic surfactant, with pure egg phosphatidylcholine (EPC) vesicles. The gradual transition from liposome to micelle of EPC vesicles in the presence of propranolol was monitored by time-resolved electron cryo-microscopy (cryo-EM) under different experimental conditions. The liposome-drug interaction was studied with varying drug/lipid (D/L) ratios and different stages were captured by direct thin-film vitrification. The time-series cryo-EM data clearly illustrate the mechanism of action of propranolol on the liposome structure: the drug disrupts the lipid bilayer by perturbing the local organization of the phospholipids. This is followed by the formation of thread-like micelles, also called worm-like micelles (WLM), and ends with the formation of spherical (globular) micelles. The overall reaction is slow, with the process taking almost two hours to be completed. The effect of a monovalent salt was also investigated by repeating the lipid-surfactant interaction experiments in the presence of KCl as an additive to the lipid/drug suspension. When KCl was added in the presence of propranolol the overall reaction was the same but with slower kinetics, suggesting that this monovalent salt affects the general lipid-to-micelle transition by stabilizing the membrane, presumably by binding to the carbonyl chains of the phosphatidylcholine.
Resumo:
In this thesis, I examine the diffusion process for a complex medical technology, the PET scanner, in two different health care systems, one of which is more market-oriented (Switzerland) and the other more centrally managed by a public agency (Quebec). The research draws on institutional and socio-political theories of the diffusion of innovations to examine how institutional contexts affect processes of diffusion. I find that diffusion proceeds more rapidly in Switzerland than in Quebec, but that processes in both jurisdictions are characterized by intense struggles among providers and between providers and public agencies. I show that the institutional environment influences these processes by determining the patterns of material resources and authority available to actors in their struggles to strategically control the technology, and by constituting the discursive resources or institutional logics on which actors may legitimately draw in their struggles to give meaning to the technology in line with their interests and values. This thesis illustrates how institutional structures and meanings manifest themselves in the context of specific decisions within an organizational field, and reveals the ways in which governance structures may be contested and realigned when they conflict with interests that are legitimized by dominant institutional logics. It is argued that this form of contestation and readjustment at the margins constitutes one mechanism by which institutional frameworks are tested, stretched and reproduced or redefined.
Resumo:
Patients with glioblastoma (GBM) have variable clinical courses, but the factors that underlie this heterogeneity are not understood. To determine whether the presence of the telomerase-independent alternative lengthening of telomeres (ALTs) mechanism is a significant prognostic factor for survival, we performed a retrospective analysis of 573 GBM patients. The presence of ALT was identified in paraffin sections using a combination of immunofluorescence for promyelocytic leukemia body and telomere fluorescence in situ hybridization. Alternative lengthening of telomere was present in 15% of the GBM patients. Patients with ALT had longer survival that was independent of age, surgery, and other treatments. Mutations in isocitrate dehydrogenase (IDH1mut) 1 frequently accompanied ALT, and in the presence of both molecular events, there was significantly longer overall survival. These data suggest that most ALT+ tumors may be less aggressive proneural GBMs, and the better prognosis may relate to the set of genetic changes associated with this tumor subtype. Despite improved overall survival of patients treated with the addition of chemotherapy to radiotherapy and surgery, ALT and chemotherapy independently provided a survival advantage, but these factors were not found to be additive. These results suggest a critical need for developing new therapies to target these specific GBM subtypes.
Resumo:
Scaffold or matrix attachment region (S/MAR) genetic elements have previously been proposed to insulate transgenes from repressive effects linked to their site of integration within the host cell genome. We have evaluated their use in various stable transfection settings to increase the production of recombinant proteins such as monoclonal antibodies from Chinese hamster ovary (CHO) cell lines. Using the green fluorescent protein coding sequence, we show that S/MAR elements mediate a dual effect on the population of transfected cells. First, S/MAR elements almost fully abolish the occurrence of cell clones that express little transgene that may result from transgene integration in an unfavorable chromosomal environment. Second, they increase the overall expression of the transgene over the whole range of expression levels, allowing the detection of cells with significantly higher levels of transgene expression. An optimal setting was identified as the addition of a S/MAR element both in cis (on the transgene expression vector) and in trans (co-transfected on a separate plasmid). When used to express immunoglobulins, the S/MAR element enabled cell clones with high and stable levels of expression to be isolated following the analysis of a few cell lines generated without transgene amplification procedures.
Resumo:
Intravenous silibinin (SIL) is an approved therapeutic that has recently been applied to patients with chronic hepatitis C, successfully clearing hepatitis C virus (HCV) infection in some patients even in monotherapy. Previous studies suggested multiple antiviral mechanisms of SIL; however, the dominant mode of action has not been determined. We first analyzed the impact of SIL on replication of subgenomic replicons from different HCV genotypes in vitro and found a strong inhibition of RNA replication for genotype 1a and genotype 1b. In contrast, RNA replication and infection of genotype 2a were minimally affected by SIL. To identify the viral target of SIL we analyzed resistance to SIL in vitro and in vivo. Selection for drug resistance in cell culture identified a mutation in HCV nonstructural protein (NS) 4B conferring partial resistance to SIL. This was corroborated by sequence analyses of HCV from a liver transplant recipient experiencing viral breakthrough under SIL monotherapy. Again, we identified distinct mutations affecting highly conserved amino acid residues within NS4B, which mediated phenotypic SIL resistance also in vitro. Analyses of chimeric viral genomes suggest that SIL might target an interaction between NS4B and NS3/4A. Ultrastructural studies revealed changes in the morphology of viral membrane alterations upon SIL treatment of a susceptible genotype 1b isolate, but not of a resistant NS4B mutant or genotype 2a, indicating that SIL might interfere with the formation of HCV replication sites. CONCLUSION: Mutations conferring partial resistance to SIL treatment in vivo and in cell culture argue for a mechanism involving NS4B. This novel mode of action renders SIL an attractive candidate for combination therapies with other directly acting antiviral drugs, particularly in difficult-to-treat patient cohorts.
Resumo:
BackgroundResearch indicates that the early attachment patterns of babies could influence their socio-emotional development and prevent the emergence of problematic behaviours in the child later in life. Many studies in the field of early attachment interventions have promoted a secure attachment bond between mother and infant. The purpose of this study was to evaluate the effectiveness of an early pilot intervention programme designed to promote a secure attachment bond in mother-infant dyads belonging to a population seeking regular treatment at urban health centres in Santiago, Chile.MethodsPrimipara mothers were randomly assigned to two intervention conditions: a secure attachment promotion programme (experimental group = 43) or an educational talk (control group = 29). The Strange Situation Assessment was used to collect data on the attachment patterns of babies.ResultsThe results show that after the intervention, there were more babies with secure attachment in the experimental group than in the control group.ConclusionsThese findings represent a preliminary step towards evaluating interventions aimed at promoting secure attachment in Chilean mother-child dyads. While the effect of the intervention is not significant, the effect size obtained is respectable and consistent with other meta-analytic findings.
Resumo:
Glycosyl-inositolphospholipid (GPL) anchoring structures are incorporated into GPL-anchored proteins immediately posttranslationally in the rough endoplasmic reticulum, but the biochemical and cellular constituents involved in this "glypiation" process are unknown. To establish whether glypiation could be achieved in vitro, mRNAs generated by transcription of cDNAs encoding two GPL-anchored proteins, murine Thy-1 antigen and human decay-accelerating factor (DAF), and a conventionally anchored control protein, polymeric-immunoglobulin receptor (IgR), were translated in a rabbit reticulocyte lysate. Upon addition of dog pancreatic rough microsomes, nascent polypeptides generated from the three mRNAs translocated into vesicles. Dispersal of the vesicles with Triton X-114 detergent and incubation of the hydrophobic phase with phosphatidylinositol-specific phospholipases C and D, enzymes specific for GPL-anchor structures, released Thy-1 and DAF but not IgR protein into the aqueous phase. The selective incorporation of phospholipase-sensitive anchoring moieties into Thy-1 and DAF but not IgR translation products during in vitro translocation indicates that rough microsomes are able to support and regulate glypiation.
Resumo:
Motive-oriented therapeutic relationship (MOTR, also called complementary therapeutic relationship) was postulated to be a particularly helpful therapeutic ingredient in the early-phase treatment of patients with personality disorders, in particular borderline personality disorder (BPD). The present pilot study of randomized controlled trial using an add-on design aims to investigate the effects of MOTR in early-phase treatment (up to session 10), with BPD patients on therapeutic alliance, session impact, and outcome. In total, N = 25 patients participated in the study. BPD patients were randomly allocated to a manual-based investigation process in 10 sessions or to the same investigation process infused with MOTR. Adherence ratings were performed and yielded satisfactory results. The results suggested a specific effectiveness of MOTR on the interpersonal problem area, on the quality of the therapeutic alliance and the quality of the therapeutic relationship, as rated by the patient. These results may have important clinical implications for the early-phase treatment of patients presenting with BPD.
Resumo:
Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria.
Resumo:
Background Airborne microbial products have been reported to promote immune responses that suppress asthma, yet how these beneficial effects take place remains controversial and poorly understood. Methods We exposed mice to the bacterium Escherichia coli and subsequently induced allergic airway inflammation through sensitization and intranasal challenge with ovalbumin. Results Pulmonary exposure to the bacterium Escherichia coli leads to a suppression of allergic airway inflammation. This immune modulation was neither mediated by the induction of a T helper 1 (Th1) response nor regulatory T cells; however, it was dependent on Toll-like receptor 4 (TLR4) but did not involve TLR desensitisation. Dendritic cell migration to the draining lymph nodes and activation of T cells was unaffected by prior exposure to E.coli, while dendritic cells in the lung displayed a less activated phenotype and had impaired antigen presentation capacity. Consequently, in situ Th2 cytokine production was abrogated. The suppression of airway hyper-responsiveness was mediated through the recruitment of gd T cells; however, the suppression of dendritic cells and T cells was mediated through a distinct mechanism that could not be overcome by the local administration of activated dendritic cells, or by the in vivo administration of tumour necrosis factor a. Conclusion Our data reveal a localized immunoregulatory pathway that acts to protect the airways from allergic inflammation.
Resumo:
RESUME Staphylococcus aureus est un important pathogène à gram-positif, à la fois responsable d'infections nosocomiales et communautaires. Le S. aureus résistant à la méthicilline est intrinsèquement résistant aux bêta-lactamines, inhibiteurs de la synthèse de la paroi bactérienne, grâce à une enzyme nouvellement acquise, la protéine liant la pénicilline 2A, caractérisée par une faible affinité pour ces agents et pouvant poursuivre la synthèse de la paroi, alors que les autres enzymes sont bloquées. Ce micro-organisme a également développé des résistances contre quasiment tous les antibiotiques couramment utilisés en clinique. Parallèlement au développement de molécules entièrement nouvelles, il peut être utile d'explorer d'éventuelles caractéristiques inattendues de médicaments déjà existants, par exemple en les combinant, dans l'espoir d'un potentiel effet synergique. Comprendre les mécanismes de tels effets synergiques pourrait contribuer à la justification de leur utilisation clinique potentielle. Récemment, un effet synergique contre le S. aureus résistant à la méthicilline a été décrit entre la streptogramine quinupristine-datfopristine et les bêta-lactamines, aussi bien in vitro qu'in vivo. Le présent travail a pour but de proposer un modèle pour le mécanisme de cette interaction positive et de l'étendre à d'autres classes d'antibiotiques. Premièrement, un certain nombre de méthodes microbiologiques ont permis de mieux cerner la nature de cette interaction, en montrant qu'elle agissait spécifiquement sur le S. aureus résistant à la méthicilline et qu'elle était restreinte à l'association entre inhibiteurs de la synthèse des protéines et bêta-lactamines. Deuxièmement, L'observation de l'influence des inhibiteurs de la synthèse des protéines sur la machinerie de la paroi bactérienne, c'est-à-dire sur l'expression des protéines liant la pénicilline, responsables de la synthèse du peptidoglycan, a montré une diminution de la quantité de ta protéine liant la pénicilline 2, connue pour posséder une activité de transglycosylation, indispensable au bon fonctionnement de la protéine liant la pénicilline 2A, responsable de la résistance à la méthicilline. Troisièmement, l'analyse fine de la composition du peptidoglycan extrait de bactéries, avant ou après traitement par des inhibiteurs de la synthèse des protéines, a montré des altérations corrélant avec leur capacité à agir en synergie avec les bêta-lactamines contre S. aureus résistant à ta méthicilline. Ces altérations dans les muropeptides pourraient représenter une signature de la diminution de la quantité de la protéine liant la pénicilline 2. Le modèle mécanistique retenu considère que les inhibiteurs de la synthèse des protéines pourraient diminuer l'expression de la protéine Liant la pénicilline 2, indispensable à la résistance à la méthiciltine, et que ce déséquilibre dans les enzymes synthétisant la paroi bactérienne pourrait générer une signature dans les muropeptides. SUMMARY Staphylococcus aureus is a major gram-positive pathogen causing both hospital-acquired and community-acquired infections. Methicillin- resistant Staphylococcus aureus is intrinsically resistant to the cell wall inhibitors beta-lactams by virtue of a newly acquired cell-wall-building enzyme, tow-affinity penicillin-binding protein 2A, which can build the wall when other penicillin-binding proteins are blocked. Moreover, the microorganism has developed resistance to virtually all non-experimental antibiotics. In addition of producing entirely new molecules, it is useful to explore unexpected features of existing drugs, for example by using them in combination, expecting drug synergisms. Understanding the mechanisms of such synergisms would help justify their putative clinical utilization. Recently, a synergism between the streptogramin quinupristin-dalfopristin and beta-lactams was reported against methicillin-resistant S. aureus, both in vitro and in vivo. The present work intends to propose a model for the mechanism of this positive interaction and to extend it to other drug classes. First, microbiological experimentation helped better defining the nature of this interaction, restricting it to methicillin-resistant S. aureus, and to the association of protein synthesis inhibitors with beta-lactams. Second, the observation of inhibitors of protein synthesis influence on the cell-wall-building machinery, i.e. on the expression of penicillin-binding proteins responsible for peptidoglycan synthesis, showed a decrease in the amount of penicillin-binding protein 2, known to provide a transglycosylase activity for glycan chain elongation, indispensable for the functionality of the low-affinity penicillin-binding protein 2A responsible for methicillin resistance. Third, the fine analysis of the peptidoglycan composition purified from bacteria before or after treatment with inhibitors of protein synthesis showed alterations that correlated with their ability to synergize with beta-lactams against methicillin-resistant S. aureus. These muropeptide alterations could be the signature of decrease in the amount of penicillin-binding protein 2. The retained mechanistic model is that inhibitors of protein synthesis could decrease the expression of penicillin-binding protein 2, wich is indispensable for methicillin-resistance, and that this imbalance in cell-wall-building enzymes could generate a muropeptide signature.