77 resultados para Numerical Uncertainty
Total knee arthroplasty - a clinical and numerical study of the micromovements of the tibial implant
Resumo:
Introduction The importance of the micromovements in the mechanism of aseptic loosening is clinically difficult to evaluate. To complete the analysis of a series of total knee arthroplasties (TKA), we used a tridimensional numerical model to study the micromovements of the tibial implant.Material and Methods Fifty one patients (with 57 cemented Porous Coated Anatomic TKAs) were reviewed (mean follow-up 4.5 year). Radiolucency at the tibial bone-cement interface was sought on the AP radiographs and divided in 7 areas. The distribution of the radiolucency was then correlated with the axis of the lower limb as measured on the orthoradiograms.The tridimensional numerical model is based on the finite element method. It allowed the measurement of the cemented prosthetic tibial implant's displacements and the microvements generated at bone-ciment interface. A total load (2000 Newton) was applied at first vertically and asymetrically on the tibial plateau, thereby simulating an axial deviation of the lower limbs. The vector's posterior inclination then permitted the addition of a tangential component to the axial load. This type of effort is generated by complex biomechanical phenomena such as knee flexion.Results 81 per cent of the 57 knees had a radiolucent line of at least 1 mm, at one or more of the tibial cement-epiphysis jonctional areas. The distribution of these lucent lines showed that they came out more frequently at the periphery of the implant. The lucent lines appeared most often under the unloaded margin of the tibial plateau, when axial deviation of lower limbs was present.Numerical simulations showed that asymetrical loading on the tibial plateau induced a subsidence of the loaded margin (0-100 microns) and lifting off at the opposite border (0-70 microns). The postero-anterior tangential component induced an anterior displacement of the tibial implant (160-220 microns), and horizontal micromovements with non homogenous distribution at the bone-ciment interface (28-54 microns).Discussion Comparison of clinical and numerical results showed a relation between the development of radiolucent lines and the unloading of the tibial implant's margin. The deleterious effect of lower limbs' axial deviation is thereby proven. The irregular distribution of lucent lines under the tibial plateau was similar of the micromovements' repartition at the bone-cement interface when tangential forces were present. A causative relation between the two phenomenaes could not however be established.Numerical simulation is a truly useful method of study; it permits to calculate micromovements which are relative, non homogenous and of very low amplitude. However, comparative clinical studies remain as essential to ensure the credibility of results.
Resumo:
The vast territories that have been radioactively contaminated during the 1986 Chernobyl accident provide a substantial data set of radioactive monitoring data, which can be used for the verification and testing of the different spatial estimation (prediction) methods involved in risk assessment studies. Using the Chernobyl data set for such a purpose is motivated by its heterogeneous spatial structure (the data are characterized by large-scale correlations, short-scale variability, spotty features, etc.). The present work is concerned with the application of the Bayesian Maximum Entropy (BME) method to estimate the extent and the magnitude of the radioactive soil contamination by 137Cs due to the Chernobyl fallout. The powerful BME method allows rigorous incorporation of a wide variety of knowledge bases into the spatial estimation procedure leading to informative contamination maps. Exact measurements (?hard? data) are combined with secondary information on local uncertainties (treated as ?soft? data) to generate science-based uncertainty assessment of soil contamination estimates at unsampled locations. BME describes uncertainty in terms of the posterior probability distributions generated across space, whereas no assumption about the underlying distribution is made and non-linear estimators are automatically incorporated. Traditional estimation variances based on the assumption of an underlying Gaussian distribution (analogous, e.g., to the kriging variance) can be derived as a special case of the BME uncertainty analysis. The BME estimates obtained using hard and soft data are compared with the BME estimates obtained using only hard data. The comparison involves both the accuracy of the estimation maps using the exact data and the assessment of the associated uncertainty using repeated measurements. Furthermore, a comparison of the spatial estimation accuracy obtained by the two methods was carried out using a validation data set of hard data. Finally, a separate uncertainty analysis was conducted that evaluated the ability of the posterior probabilities to reproduce the distribution of the raw repeated measurements available in certain populated sites. The analysis provides an illustration of the improvement in mapping accuracy obtained by adding soft data to the existing hard data and, in general, demonstrates that the BME method performs well both in terms of estimation accuracy as well as in terms estimation error assessment, which are both useful features for the Chernobyl fallout study.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.
Resumo:
Background: Alcohol is a major risk factor for burden of disease and injuries globally. This paper presents a systematic method to compute the 95% confidence intervals of alcohol-attributable fractions (AAFs) with exposure and risk relations stemming from different sources.Methods: The computation was based on previous work done on modelling drinking prevalence using the gamma distribution and the inherent properties of this distribution. The Monte Carlo approach was applied to derive the variance for each AAF by generating random sets of all the parameters. A large number of random samples were thus created for each AAF to estimate variances. The derivation of the distributions of the different parameters is presented as well as sensitivity analyses which give an estimation of the number of samples required to determine the variance with predetermined precision, and to determine which parameter had the most impact on the variance of the AAFs.Results: The analysis of the five Asian regions showed that 150 000 samples gave a sufficiently accurate estimation of the 95% confidence intervals for each disease. The relative risk functions accounted for most of the variance in the majority of cases.Conclusions: Within reasonable computation time, the method yielded very accurate values for variances of AAFs.
Resumo:
We have modeled numerically the seismic response of a poroelastic inclusion with properties applicable to an oil reservoir that interacts with an ambient wavefield. The model includes wave-induced fluid flow caused by pressure differences between mesoscopic-scale (i.e., in the order of centimeters to meters) heterogeneities. We used a viscoelastic approximation on the macroscopic scale to implement the attenuation and dispersion resulting from this mesoscopic-scale theory in numerical simulations of wave propagation on the kilometer scale. This upscaling method includes finite-element modeling of wave-induced fluid flow to determine effective seismic properties of the poroelastic media, such as attenuation of P- and S-waves. The fitted, equivalent, viscoelastic behavior is implemented in finite-difference wave propagation simulations. With this two-stage process, we model numerically the quasi-poroelastic wave-propagation on the kilometer scale and study the impact of fluid properties and fluid saturation on the modeled seismic amplitudes. In particular, we addressed the question of whether poroelastic effects within an oil reservoir may be a plausible explanation for low-frequency ambient wavefield modifications observed at oil fields in recent years. Our results indicate that ambient wavefield modification is expected to occur for oil reservoirs exhibiting high attenuation. Whether or not such modifications can be detected in surface recordings, however, will depend on acquisition design and noise mitigation processing as well as site-specific conditions, such as the geologic complexity of the subsurface, the nature of the ambient wavefield, and the amount of surface noise.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. The paper considers a data driven approach in modelling uncertainty in spatial predictions. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic features and describe stochastic variability and non-uniqueness of spatial properties. It is able to capture and preserve key spatial dependencies such as connectivity, which is often difficult to achieve with two-point geostatistical models. Semi-supervised SVR is designed to integrate various kinds of conditioning data and learn dependences from them. A stochastic semi-supervised SVR model is integrated into a Bayesian framework to quantify uncertainty with multiple models fitted to dynamic observations. The developed approach is illustrated with a reservoir case study. The resulting probabilistic production forecasts are described by uncertainty envelopes.
Resumo:
Relationships between porosity and hydraulic conductivity tend to be strongly scale- and site-dependent and are thus very difficult to establish. As a result, hydraulic conductivity distributions inferred from geophysically derived porosity models must be calibrated using some measurement of aquifer response. This type of calibration is potentially very valuable as it may allow for transport predictions within the considered hydrological unit at locations where only geophysical measurements are available, thus reducing the number of well tests required and thereby the costs of management and remediation. Here, we explore this concept through a series of numerical experiments. Considering the case of porosity characterization in saturated heterogeneous aquifers using crosshole ground-penetrating radar and borehole porosity log data, we use tracer test measurements to calibrate a relationship between porosity and hydraulic conductivity that allows the best prediction of the observed hydrological behavior. To examine the validity and effectiveness of the obtained relationship, we examine its performance at alternate locations not used in the calibration procedure. Our results indicate that this methodology allows us to obtain remarkably reliable hydrological predictions throughout the considered hydrological unit based on the geophysical data only. This was also found to be the case when significant uncertainty was considered in the underlying relationship between porosity and hydraulic conductivity.
Resumo:
An epidemic model is formulated by a reactionâeuro"diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation.
Resumo:
We are interested in the development, implementation and testing of an orthotropic model for cardiac contraction based on an active strain decomposition. Our model addresses the coupling of a transversely isotropic mechanical description at the cell level, with an orthotropic constitutive law for incompressible tissue at the macroscopic level. The main differences with the active stress model are addressed in detail, and a finite element discretization using Taylor-Hood and MINI elements is proposed and illustrated with numerical examples.
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
This study deals with the psychological processes underlying the selection of appropriate strategy during exploratory behavior. A new device was used to assess sexual dimorphisms in spatial abilities that do not depend on spatial rotation, map reading or directional vector extraction capacities. Moreover, it makes it possible to investigate exploratory behavior as a specific response to novelty that trades off risk and reward. Risk management under uncertainty was assessed through both spontaneous searching strategies and signal detection capacities. The results of exploratory behavior, detection capacities, and decision-making strategies seem to indicate that women's exploratory behavior is based on risk-reducing behavior while men behavior does not appear to be influenced by this variable. This difference was interpreted as a difference in information processing modifying beliefs concerning the likelihood of uncertain events, and therefore influencing risk evaluation.